Geophysical techniques play key roles in the measuring, monitoring, and verifying the safety of CO2 sequestration and in identifying the efficiency of CO2-enhanced oil recovery. Although geophysical monitoring techniq...Geophysical techniques play key roles in the measuring, monitoring, and verifying the safety of CO2 sequestration and in identifying the efficiency of CO2-enhanced oil recovery. Although geophysical monitoring techniques for CO2 sequestration have grown out of conventional oil and gas geophysical exploration techniques, it takes a long time to conduct geophysical monitoring, and there are many barriers and challenges. In this paper, with the initial objective of performing CO2 sequestration, we studied the geophysical tasks associated with evaluating geological storage sites and monitoring CO2 sequestration. Based on our review of the scope of geophysical monitoring techniques and our experience in domestic and international carbon capture and sequestration projects, we analyzed the inherent difficulties and our experiences in geophysical monitoring techniques, especially, with respect to 4D seismic acquisition, processing, and interpretation.展开更多
Plot sampling was conducted in the second cultivation areas ofLarix olgensis in Heilongjiang Province, China. By analyzing plot investigation data, wood properties, and kraft pulps of 840 plots and 248 sample trees in...Plot sampling was conducted in the second cultivation areas ofLarix olgensis in Heilongjiang Province, China. By analyzing plot investigation data, wood properties, and kraft pulps of 840 plots and 248 sample trees in industrial plantations of L. olgensis on different sites, we examined the growth process of L. olgensis industrial plantation with suitable structure, the wood fiber feature, chemical composition, physical performance and pulp characteristics. It is suggested that site conditions have major effects on plantation growth, fiber contains, fiber length, rate between fiber length and fiber width, pulping rate and pulp physics intensity. The best site for L. olgensis industrial plantation growth is site class Ⅰ and site class Ⅱ, which are on lower locations. Site condition has an obvious influence on the wood characteristics. Within the range of site conditions and stand densities studied, the worse the site condition, the less the fiber contains, the shorter the fiber length, and the more the 1% NaOH extraction. This kind of relationship becomes more obvious as stand age increases. However, the influence of site condition on pulping rate and pulp physics intensity is not obvious. The result provides theoretical base for cultivation of industrial fiber plantation of L. olgensis.展开更多
One of the most important factors controlling the morphology of the modem Huanghe (Yellow) River delta is consolidation settlement, which is impacted by fast deposition, high water content, and low density of seaflo...One of the most important factors controlling the morphology of the modem Huanghe (Yellow) River delta is consolidation settlement, which is impacted by fast deposition, high water content, and low density of seafloor sediment. Consolidation settlement of the Huanghe River subaqueous delta was studied based on field data, laboratory experiments on 12 drill holes, and the one-dimensional consolidation theory. Results show that vertical sediment characteristics varied greatly in the rapidly forming sedimentary bodies of the modem Huanghe River subaqueous delta. Sediments in the upper parts of drill holes were coarser than those in the deeper parts, and other physical and mechanical properties changed accordingly. On the basis of the one-dimensional consolidation theory and drilling depth, the final consolidation settlement of drill holes was between 0.6 m and 2.8 m, and the mean settlement of unit depth was at 1.5-3.5 cm/m. It takes about 15-20 years for the consolidation degree to reach 90% and the average sedimentation rate within the overlying 50 m strata was at 5 cm/a to 12 cm/a. This study helps to forecast the final consolidation settlement and settlement rate of the modem Huanghe River subaqueous delta, which provides key geotechnical information for marine engineers.展开更多
Ionic liquids (ILs) have attracted many attentions in the dissolution of cellulose due to their unique physicochemical properties as green solvents. However, the mechanism of dissolution is still under debate. In th...Ionic liquids (ILs) have attracted many attentions in the dissolution of cellulose due to their unique physicochemical properties as green solvents. However, the mechanism of dissolution is still under debate. In this work, computational investigation for the mechanisms of dissolution of cellulose in [Bmim]Cl, [Emim]C1 and [Emim]OAc ILs was performed, and it was focused on the process of breakage of cellulose chain and ring opening using cellobiose as a model molecule. The detailed mechanism and reaction energy barriers were computed for various possible pathways by density functional theoretical method. The key finding was that 1Ls catalyze the dissolution process by synergistic effect of anion and cation, which led to the cleavage of cellulose chain and formation of derivatives of cellulose. The investigation on ring opening process ofcellobiose suggested that carbene formed in ILs played an important role in the side reaction of cellulose, and it facilitated the formation of a covalent bond between cellulose and imidazolium core. These computation results may provide new perspective to understand and apply ILs for pretreatment of cellulose.展开更多
Disorder and localization have dramatic influence on the topological properties of a quantum system.While strong disorder can close the band gap thus depriving topological materials of topological features,disorder ma...Disorder and localization have dramatic influence on the topological properties of a quantum system.While strong disorder can close the band gap thus depriving topological materials of topological features,disorder may also induce topology from trivial band structures,wherein topological invariants are shared by completely localized states.Here we experimentally investigate a fundamentally distinct scenario where topology is identified in a critically localized regime,with eigenstates neither fully extended nor completely localized.Adopting the technique of momentum-lattice engineering for ultracold atoms,we implement a one-dimensional,generalized Aubry-Andrémodel with both diagonal and off-diagonal quasi-periodic disorder in momentum space,and characterize its localization and topological properties through dynamic observables.We then demonstrate the impact of interactions on the critically localized topological state,as a first experimental endeavor toward the clarification of many-body critical phase,the critical analogue of the many-body localized state.展开更多
In this paper,we present the explicit transformations of the optimal 1 → 3,4,5 phase-covariant cloning in 3 dimensions.The cloning fidelities are covered by the theoretical bounds of the optimal 1 → 3k,3k + 1,3k + 2...In this paper,we present the explicit transformations of the optimal 1 → 3,4,5 phase-covariant cloning in 3 dimensions.The cloning fidelities are covered by the theoretical bounds of the optimal 1 → 3k,3k + 1,3k + 2 phase-covariant cloning of qutrits,where k ≥ 1 is the integral [Phys.Rev.A 67(2003) 042306].展开更多
基金supported by National 863 Program Grant 2012AA050103 and Grant 2011KTCQ03-09
文摘Geophysical techniques play key roles in the measuring, monitoring, and verifying the safety of CO2 sequestration and in identifying the efficiency of CO2-enhanced oil recovery. Although geophysical monitoring techniques for CO2 sequestration have grown out of conventional oil and gas geophysical exploration techniques, it takes a long time to conduct geophysical monitoring, and there are many barriers and challenges. In this paper, with the initial objective of performing CO2 sequestration, we studied the geophysical tasks associated with evaluating geological storage sites and monitoring CO2 sequestration. Based on our review of the scope of geophysical monitoring techniques and our experience in domestic and international carbon capture and sequestration projects, we analyzed the inherent difficulties and our experiences in geophysical monitoring techniques, especially, with respect to 4D seismic acquisition, processing, and interpretation.
基金Foundation project: This paper was supported by China Postdoctoral Science Foundation (2005037637), Heilongjiang Postdoctoral Science Foundation (LBH-Z05031) and Project of State Forestry Administration, China (2006-37).
文摘Plot sampling was conducted in the second cultivation areas ofLarix olgensis in Heilongjiang Province, China. By analyzing plot investigation data, wood properties, and kraft pulps of 840 plots and 248 sample trees in industrial plantations of L. olgensis on different sites, we examined the growth process of L. olgensis industrial plantation with suitable structure, the wood fiber feature, chemical composition, physical performance and pulp characteristics. It is suggested that site conditions have major effects on plantation growth, fiber contains, fiber length, rate between fiber length and fiber width, pulping rate and pulp physics intensity. The best site for L. olgensis industrial plantation growth is site class Ⅰ and site class Ⅱ, which are on lower locations. Site condition has an obvious influence on the wood characteristics. Within the range of site conditions and stand densities studied, the worse the site condition, the less the fiber contains, the shorter the fiber length, and the more the 1% NaOH extraction. This kind of relationship becomes more obvious as stand age increases. However, the influence of site condition on pulping rate and pulp physics intensity is not obvious. The result provides theoretical base for cultivation of industrial fiber plantation of L. olgensis.
基金Supported by the National Science Foundation for Young Scientists of China(No.41206054)the Joint Fund of the National Natural Science Foundation of China and Shandong Province(No.U1606401)the Special Fund of Chinese Central Government for Basic Scientific Research Operations in Commonweal Research Institutes(No.2015G08)
文摘One of the most important factors controlling the morphology of the modem Huanghe (Yellow) River delta is consolidation settlement, which is impacted by fast deposition, high water content, and low density of seafloor sediment. Consolidation settlement of the Huanghe River subaqueous delta was studied based on field data, laboratory experiments on 12 drill holes, and the one-dimensional consolidation theory. Results show that vertical sediment characteristics varied greatly in the rapidly forming sedimentary bodies of the modem Huanghe River subaqueous delta. Sediments in the upper parts of drill holes were coarser than those in the deeper parts, and other physical and mechanical properties changed accordingly. On the basis of the one-dimensional consolidation theory and drilling depth, the final consolidation settlement of drill holes was between 0.6 m and 2.8 m, and the mean settlement of unit depth was at 1.5-3.5 cm/m. It takes about 15-20 years for the consolidation degree to reach 90% and the average sedimentation rate within the overlying 50 m strata was at 5 cm/a to 12 cm/a. This study helps to forecast the final consolidation settlement and settlement rate of the modem Huanghe River subaqueous delta, which provides key geotechnical information for marine engineers.
基金Supported by the National Natural Science Foundation of China(21210006,21276255,21406230,91434111)the Natural Science Foundation of Beijing of China(2131005,2142029)
文摘Ionic liquids (ILs) have attracted many attentions in the dissolution of cellulose due to their unique physicochemical properties as green solvents. However, the mechanism of dissolution is still under debate. In this work, computational investigation for the mechanisms of dissolution of cellulose in [Bmim]Cl, [Emim]C1 and [Emim]OAc ILs was performed, and it was focused on the process of breakage of cellulose chain and ring opening using cellobiose as a model molecule. The detailed mechanism and reaction energy barriers were computed for various possible pathways by density functional theoretical method. The key finding was that 1Ls catalyze the dissolution process by synergistic effect of anion and cation, which led to the cleavage of cellulose chain and formation of derivatives of cellulose. The investigation on ring opening process ofcellobiose suggested that carbene formed in ILs played an important role in the side reaction of cellulose, and it facilitated the formation of a covalent bond between cellulose and imidazolium core. These computation results may provide new perspective to understand and apply ILs for pretreatment of cellulose.
基金the National Key Research and Development Program of China(2018YFA0307200,2016YFA0301700 and 2017YFA0304100)the National Natural Science Foundation of China(12074337 and 11974331)+2 种基金Natural Science Foundation of Zhejiang Province(LR21A040002 and LZ18A040001)Zhejiang Provincial Plan for Science and Technology(2020C01019)the Fundamental Research Funds for the Central Universities(2020XZZX002-05 and 2021FZZX001-02)。
文摘Disorder and localization have dramatic influence on the topological properties of a quantum system.While strong disorder can close the band gap thus depriving topological materials of topological features,disorder may also induce topology from trivial band structures,wherein topological invariants are shared by completely localized states.Here we experimentally investigate a fundamentally distinct scenario where topology is identified in a critically localized regime,with eigenstates neither fully extended nor completely localized.Adopting the technique of momentum-lattice engineering for ultracold atoms,we implement a one-dimensional,generalized Aubry-Andrémodel with both diagonal and off-diagonal quasi-periodic disorder in momentum space,and characterize its localization and topological properties through dynamic observables.We then demonstrate the impact of interactions on the critically localized topological state,as a first experimental endeavor toward the clarification of many-body critical phase,the critical analogue of the many-body localized state.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 11074002,61073048,and 11104057the Natural Science Foundation of the Education Department of Anhui Province of China under Grant Nos. KJ2010ZD08,KJ2012A245the Postgraduate Program of Huainan Normal University
文摘In this paper,we present the explicit transformations of the optimal 1 → 3,4,5 phase-covariant cloning in 3 dimensions.The cloning fidelities are covered by the theoretical bounds of the optimal 1 → 3k,3k + 1,3k + 2 phase-covariant cloning of qutrits,where k ≥ 1 is the integral [Phys.Rev.A 67(2003) 042306].