Key variable identification for classifications is related to many trouble-shooting problems in process indus-tries. Recursive feature elimination based on support vector machine (SVM-RFE) has been proposed recently i...Key variable identification for classifications is related to many trouble-shooting problems in process indus-tries. Recursive feature elimination based on support vector machine (SVM-RFE) has been proposed recently in applica-tion for feature selection in cancer diagnosis. In this paper, SVM-RFE is used to the key variable selection in fault diag-nosis, and an accelerated SVM-RFE procedure based on heuristic criterion is proposed. The data from Tennessee East-man process (TEP) simulator is used to evaluate the effectiveness of the key variable selection using accelerated SVM-RFE (A-SVM-RFE). A-SVM-RFE integrates computational rate and algorithm effectiveness into a consistent framework. It not only can correctly identify the key variables, but also has very good computational rate. In comparison with contribution charts combined with principal component aralysis (PCA) and other two SVM-RFE algorithms, A-SVM-RFE performs better. It is more fitting for industrial application.展开更多
文摘【目的】阅读理解是人类最重要的认知能力,评价人类的阅读理解能力需要客观指标。【方法】提出一种基于脑磁图(magnetoencephalogram, MEG)虚相干脑功能连接的预测模型,使用虚相干算法构建全脑MEG功能连接,并通过单变量特征选择算法对特征进行选择,采用偏最小二乘回归(Partial Least Squares, PLS)构建预测模型对阅读理解能力进行预测。【结果】基于MEG虚相干功能连接的偏最小二乘回归模型可以成功预测阅读理解分数;进行单变量特征选择的模型预测性能更高、预测更准确(R^(2)[PVT-Language]=0.524,MSE[PVT-Language]=5.042;R^(2)[ORRT-Language]=0.536,MSE[ORRT-Language]=5.142),并且发现采用与阅读理解相关的任务态数据集比静息态数据集更适合用来预测阅读理解能力,且特征选择的功能连接更精确。【结论】基于MEG虚相干功能连接的PLS预测模型可以用来客观评价人类阅读理解能力。
基金Supported by China 973 Program (No.2002CB312200), the National Natural Science Foundation of China (No.60574019 and No.60474045), the Key Technologies R&D Program of Zhejiang Province (No.2005C21087) and the Academician Foundation of Zhejiang Province (No.2005A1001-13).
文摘Key variable identification for classifications is related to many trouble-shooting problems in process indus-tries. Recursive feature elimination based on support vector machine (SVM-RFE) has been proposed recently in applica-tion for feature selection in cancer diagnosis. In this paper, SVM-RFE is used to the key variable selection in fault diag-nosis, and an accelerated SVM-RFE procedure based on heuristic criterion is proposed. The data from Tennessee East-man process (TEP) simulator is used to evaluate the effectiveness of the key variable selection using accelerated SVM-RFE (A-SVM-RFE). A-SVM-RFE integrates computational rate and algorithm effectiveness into a consistent framework. It not only can correctly identify the key variables, but also has very good computational rate. In comparison with contribution charts combined with principal component aralysis (PCA) and other two SVM-RFE algorithms, A-SVM-RFE performs better. It is more fitting for industrial application.