期刊文献+
共找到40篇文章
< 1 2 >
每页显示 20 50 100
用于单图像超分辨率的全局特征高效融合网络
1
作者 张玉波 田康 徐磊 《化工自动化及仪表》 CAS 2024年第2期207-214,300,共9页
现有图像超分辨率网络中普遍存在对层间特征利用水平较低的现象,使得在图像重建过程中有细节特征丢失,最终处理结果纹理模糊、图像质量欠佳。为此提出一种用于图像超分辨率的全局特征高效融合网络模型。主体使用对称卷积神经网络实现浅... 现有图像超分辨率网络中普遍存在对层间特征利用水平较低的现象,使得在图像重建过程中有细节特征丢失,最终处理结果纹理模糊、图像质量欠佳。为此提出一种用于图像超分辨率的全局特征高效融合网络模型。主体使用对称卷积神经网络实现浅层特征的逐级提取,并结合Transformer完成浅层与深层特征的融合利用。设计的对称自指导残差模块可以在浅层网络实现不同层间特征更具表达性的融合,同时提升网络的特征提取能力;特征互导融合模块可以增强网络对浅层特征与深层特征的融合能力,促进更多的特征信息参与到细图像重建过程。在Set5、Set14、BSD100和Urban100数据集上同近年来的经典网络(HR、CARN、IMDN、MADNet、LBNet)进行性能对比,实验结果表明:所提网络模型在峰值信噪比上有所提升,并在视觉直观对比中取得了较好的图像超分辨率效果,可改善超分辨率图像质量欠佳的问题。 展开更多
关键词 单图像超分辨率 全局特征高效融合网络模型 对称自指导残差模块 特征互导融合模块 深度学习
下载PDF
基于特征级联融合的图像篡改检测方法
2
作者 宣高媛 杨高明 毕飞龙 《宁夏师范学院学报》 2024年第1期102-112,共11页
针对图像篡改检测领域中不能有效处理不同尺度特征问题,提出一种特征级联融合检测网络.网络采用特征级联融合模块结合U型分割网络结构,有效融合不同尺度的特征信息.通过在每个网络块融合浅层特征信息、瓶颈层和深层特征信息,以弥补深层... 针对图像篡改检测领域中不能有效处理不同尺度特征问题,提出一种特征级联融合检测网络.网络采用特征级联融合模块结合U型分割网络结构,有效融合不同尺度的特征信息.通过在每个网络块融合浅层特征信息、瓶颈层和深层特征信息,以弥补深层语义信息的不足,并抑制背景信息干扰,提升了浅层网络的检测能力,实现了对篡改区域的精准定位.实验结果表明,与现有的图像篡改检测方法相比,特征级联融合检测网络显示出更高的准确性和稳定性,在CASIA数据集上F-measure提高了3%,在COLUMB数据集上提高了4%,证明了其在图像篡改检测任务中的有效性. 展开更多
关键词 图像篡改检测 图像分割算法 级联融合损失 特征级联融合模块 U型网络结构
下载PDF
融合注意力特征及动态卷积的肺结节辅助诊断 被引量:3
3
作者 谷宇 刘佳琪 +3 位作者 杨立东 张宝华 张祥松 贾成一 《科学技术与工程》 北大核心 2023年第16期6834-6844,共11页
针对肺结节关键影像征象信息不易获取,部分卷积神经网络(convolutional neural networks,CNN)模型对肺结节的识别率不高的问题,提出一种融合注意力特征的动态卷积残差网络(dynamic convolutional residual networks incorporating atten... 针对肺结节关键影像征象信息不易获取,部分卷积神经网络(convolutional neural networks,CNN)模型对肺结节的识别率不高的问题,提出一种融合注意力特征的动态卷积残差网络(dynamic convolutional residual networks incorporating attention features,DcANet),并在有效实现肺结节良恶性分类的基础上对所提模型的诊断结果进行可视化分析。此网络以适应肺结节三维小尺寸输入特点的残差网络为基本框架,在DcABlock部分使用可以自适应调整卷积参数的动态卷积以及迭代注意特征融合模块,使模型能够更准确地获取肺结节信息,提高模型的表征能力。此外,还使用类激活映射将三维图像的各层切片进行可视化分析。实验在最终测试集上的准确率为85.87%,平衡F分数(F1)值为82.67%,敏感度和特异性的综合指标Gmean值为85.51%。实验结果表明:该网络可以提升对肺结节良恶性分类的准确性,诊断结果具有可信性,有一定的临床应用价值。 展开更多
关键词 肺结节辅助诊断 动态卷积 迭代注意特征融合模块 深度学习 类激活映射
下载PDF
基于多尺度特征融合的人脸检测算法
4
作者 龚汝洪 周燕 《物联网技术》 2024年第7期39-42,45,共5页
近年来人脸检测技术得到了快速发展,特别是基于人工智能神经网络的人脸检测技术在一些工业级环境中得到了广泛应用,但这些人脸检测技术在识别戴口罩的人脸时会出现召回率不高的现象。针对这个问题,研究一种能够对戴口罩人脸进行精准定... 近年来人脸检测技术得到了快速发展,特别是基于人工智能神经网络的人脸检测技术在一些工业级环境中得到了广泛应用,但这些人脸检测技术在识别戴口罩的人脸时会出现召回率不高的现象。针对这个问题,研究一种能够对戴口罩人脸进行精准定位的技术,提出一种基于多尺度特征融合的人脸检测算法。该算法使用MobileNet轻量级的网络框架,引入特征金字塔融合模块和SSH模块,并设计了两种损失函数:人脸分类损失函数和人脸检测回归框损失函数。实验中使用WIDER FACE和MAFA数据集对该算法进行训练,并与当前主流的人脸检测算法进行比较,结果表明文中提出的算法具有较好的性能。 展开更多
关键词 多尺度特征融合 口罩人脸检测 特征金字塔融合模块 SSH模块 损失函数 MAFA数据集
下载PDF
融合多分辨率特征的点云分类与分割网络
5
作者 陶志勇 李衡 +1 位作者 豆淼森 林森 《光电工程》 CAS CSCD 北大核心 2023年第10期50-61,共12页
针对现有网络难以有效学习点云局部几何信息的问题,提出一种融合点云多分辨率特征的图卷积网络。首先,通过k-最近邻算法对点云构建局部图结构,以更好地表示点云的局部几何结构。其次,基于最远点采样算法提出一个并行通道分支,该分支通... 针对现有网络难以有效学习点云局部几何信息的问题,提出一种融合点云多分辨率特征的图卷积网络。首先,通过k-最近邻算法对点云构建局部图结构,以更好地表示点云的局部几何结构。其次,基于最远点采样算法提出一个并行通道分支,该分支通过对点云进行下采样来获得不同分辨率的点云,然后对其进行分组处理;为克服点云的稀疏特性,提出一种几何映射模块对分组点云执行正态化操作。最后,提出一种特征融合模块对图特征和多分辨率特征进行聚合,以更有效地获得全局特征。实验使用ModelNet40、ScanObjectNN和ShapeNet Part数据集进行评估,结果表明,提出的网络具有良好的分类与分割性能。 展开更多
关键词 点云 图卷积网络 多分辨率点云 特征融合模块
下载PDF
基于残差卷积网络的多传感器融合永磁同步电机故障诊断
6
作者 邱建琪 沈佳晨 +2 位作者 史涔溦 史婷娜 李鸿杰 《电机与控制学报》 EI CSCD 北大核心 2024年第7期24-33,42,共11页
作为工业生产与日常生活的常见设备,永磁同步电机的故障诊断研究具有十分重要的意义。以永磁同步电机的匝间短路、退磁、轴承故障为诊断目标,提出一种新型的多传感器特征融合网络(MSFFN),结合多传感器融合技术与卷积神经网络实现永磁同... 作为工业生产与日常生活的常见设备,永磁同步电机的故障诊断研究具有十分重要的意义。以永磁同步电机的匝间短路、退磁、轴承故障为诊断目标,提出一种新型的多传感器特征融合网络(MSFFN),结合多传感器融合技术与卷积神经网络实现永磁同步电机的可靠故障诊断。网络采用2个带有残差模块的卷积神经网络,对输入的电流信号与振动信号并行提取隐藏特征,并设计一种中间特征融合模块(IFFM)有效融合电流和振动的各层隐藏特征,IFFM基于注意力机制对网络中的电流特征与振动特征进行筛选,自适应关注不同信号的内在相关特征,以实现更好的诊断效果。搭建了故障样机测试平台进行数据采集与实验验证,实验结果表明,提出方法具有更高的诊断准确率,同时在叠加了强噪声的条件下,具备更强的抗干扰能力。 展开更多
关键词 多传感器融合 卷积神经网络 中间特征融合模块 残差模块 永磁同步电机 故障诊断
下载PDF
基于双阶段特征解耦网络的单幅图像去雨方法
7
作者 汤红忠 熊珮全 +2 位作者 王蔚 王晒雅 陈磊 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2024年第2期273-282,共10页
针对现有的单幅图像去雨方法无法有效地平衡背景图像细节恢复与有雨分量去除问题,提出一种基于双阶段特征解耦网络的单幅图像去雨方法,采用渐进式的学习方式从粗到细分阶段进行单幅图像去雨.首先构建压缩激励残差模块,实现背景图像与有... 针对现有的单幅图像去雨方法无法有效地平衡背景图像细节恢复与有雨分量去除问题,提出一种基于双阶段特征解耦网络的单幅图像去雨方法,采用渐进式的学习方式从粗到细分阶段进行单幅图像去雨.首先构建压缩激励残差模块,实现背景图像与有雨分量的初步分离;然后设计全局特征融合模块,其中特别引入特征解耦模块分离有雨分量和背景图像的特征,实现细粒度的图像去雨;最后利用重构损失、结构相似损失、边缘感知损失和纹理一致性损失构成的复合损失函数训练网络,实现高质量的无雨图像重构.实验结果表明,在Test100合成雨图数据集上,所提方法峰值信噪比为25.57dB,结构相似性为0.89;在100幅真实雨图上,所提方法的自然图像质量评估器为3.53,无参考图像空间质量评估器为20.16;在去雨后的RefineNet目标分割任务中,平均交并比为29.41%,平均像素精度为70.06%;视觉效果上,该方法能保留更多的背景图像特征,有效地辅助下游的目标分割任务的开展. 展开更多
关键词 特征解耦网络 压缩激励残差模块 全局特征融合模块 复合损失函数 单幅图像去雨
下载PDF
基于全尺度特征融合的自监督单目深度估计
8
作者 王聪 陈莹 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2023年第5期667-675,共9页
针对自监督单目深度估计生成的深度图边界模糊、伪影过多等问题,提出基于全尺度特征融合模块(FSFFM)和链式残差池化模块(CRPM)的深度网络编解码结构.在解码时,将编码器得到的高分辨率和相同分辨率特征与之前解码器得到的低分辨率特征以... 针对自监督单目深度估计生成的深度图边界模糊、伪影过多等问题,提出基于全尺度特征融合模块(FSFFM)和链式残差池化模块(CRPM)的深度网络编解码结构.在解码时,将编码器得到的高分辨率和相同分辨率特征与之前解码器得到的低分辨率特征以及上一级逆深度图进行融合,使网络学习到的特征既包含全局信息又包含局部信息.使用CRPM从融合特征中获取背景上下文信息,最终得到更精确的深度图.在KITTI数据集上进行了实验,与之前工作相比,该方法深度值绝对误差降低了7.8%,阈值为1.25的精确度提高了1.1%,其结果优于现有大多数自监督单目深度估计算法. 展开更多
关键词 深度估计 自监督 全尺度特征融合模块 链式残差池化模块
下载PDF
基于局部特征增强的视网膜血管分割
9
作者 王倩 辛月兰 《激光杂志》 CAS 北大核心 2024年第4期216-222,共7页
视网膜血管具有细小复杂的特点,在对其进行分割时,经常出现噪点、断裂和欠分割等问题。针对此现象,提出一种基于局部特征增强的轻量化网络LRU-Net,以捕获更多细小血管特征。首先,在通道注意力模块中加入特征提取模块,对输入特征进行二... 视网膜血管具有细小复杂的特点,在对其进行分割时,经常出现噪点、断裂和欠分割等问题。针对此现象,提出一种基于局部特征增强的轻量化网络LRU-Net,以捕获更多细小血管特征。首先,在通道注意力模块中加入特征提取模块,对输入特征进行二次特征提取,以得到更多的细节特征;其次,设计了一个特征融合模块,在解码器中能更有效地融合高级和低级特性,加强最终的特征表示;最后,设计了一个上下文聚合模块,提取最深层特征不同分辨率的多尺度信息,然后进行拼接,使进入上采样的输入特征更加细化。在FIVES和OCTA-500数据集上的实验结果表明,与基础网络U-Net相比,本文所提方法在做到轻量化的同时,视网膜血管分割的准确度也有了一定的提升,在两个数据集上分别达到了98.45%、97.05%。 展开更多
关键词 特征增强 特征融合模块 上下文聚合模块 视网膜血管分割
原文传递
基于特征增强网络的交通场景图像语义分割
10
作者 代文娟 谢刚 张浩雪 《太原科技大学学报》 2024年第3期285-291,共7页
针对当前交通场景图像语义分割时,因特征信息提取不足导致分割精度低的问题,提出了特征增强网络(EFN).首先将网络ResNeXt-101中卷积层5-3的输出输入到多尺度特征注意力模块中进行有针对性的特征提取;然后输出结果与卷积层2-3、卷积层3-... 针对当前交通场景图像语义分割时,因特征信息提取不足导致分割精度低的问题,提出了特征增强网络(EFN).首先将网络ResNeXt-101中卷积层5-3的输出输入到多尺度特征注意力模块中进行有针对性的特征提取;然后输出结果与卷积层2-3、卷积层3-3和卷积层4-3提取的特征图通过特征融合模块进行高效的特征融合,最后利用上采样得到图像分割结果。在数据集CamVid上的实验结果表明特征增强网络可有效提高交通场景图像语义分割的精准度。 展开更多
关键词 语义分割 多尺度特征 注意力机制 特征融合模块 语义增强
下载PDF
基于通道与空间特征选择融合的人体姿态检测
11
作者 杨洪智 丁学明 姬建林 《智能计算机与应用》 2021年第12期133-137,142,共6页
针对人体姿态检测过程中多尺度特征表达不充分的问题,本文利用选择性卷积核网络(Selective Kernel Networks,SKNet)的思想,提出了一种通道与空间特征选择融合模块,并应用于高分辨率网络,从而在多尺度特征融合过程中进行关键信息选择,不... 针对人体姿态检测过程中多尺度特征表达不充分的问题,本文利用选择性卷积核网络(Selective Kernel Networks,SKNet)的思想,提出了一种通道与空间特征选择融合模块,并应用于高分辨率网络,从而在多尺度特征融合过程中进行关键信息选择,不仅提高了多尺度特征表达,同时保留了原有多尺度特征融合交换不同特征信息的优点。实验结果表明,在高分辨率网络中加入通道与空间特征并联模块后,进一步提高了人体姿态检测的精度。在两种不同网络深度的模型中,姿态关键点预测的平均准确率分别有0.6%和0.7%的精度提升,最后通过网络推理过程可视化,进一步分析了该模块在卷积过程中起到的作用。 展开更多
关键词 人体姿态检测 高分辨率网络 特征选择融合模块
下载PDF
基于改进YOLOX的自然环境下核桃识别算法研究
12
作者 钟正扬 云利军 +1 位作者 杨璇玺 陈载清 《河南农业科学》 北大核心 2024年第1期152-161,共10页
针对现有目标检测算法对自然环境下核桃识别存在漏检、误检等问题,提出了一种基于Swin Transformer多层特征融合改进的YOLOX-S核桃识别算法。首先,在主干特征提取网络中引入基于Swin Transformer的多层特征融合模块,借助Swin Transforme... 针对现有目标检测算法对自然环境下核桃识别存在漏检、误检等问题,提出了一种基于Swin Transformer多层特征融合改进的YOLOX-S核桃识别算法。首先,在主干特征提取网络中引入基于Swin Transformer的多层特征融合模块,借助Swin Transformer的多头注意力机制对小目标的特征信息进行提取并与特征图进行融合,可以有效解决因网络层数加深导致的高层特征图中小目标特征信息丢失问题;其次,为了提高算法的检测精度,引入更高效的Repblock模块对原网络中的CSP模块进行替换;最后,为了提高下采样效果,使用更为优秀的Transition Block模块作为主干特征提取网络的下采样模块。结果表明,改进后的YOLOX-S模型在采集的自然环境下核桃数据集上平均精度AP50达到96.72%,分别比Faster-RCNN、YOLOv5-S、YOLOX-S算法提高7.36、1.38、0.62百分点,检测速度达到46 f/s,模型参数大小为20.55 M。改进后的YOLOX-S算法具有更好的精度,改善了漏检和误检问题,对自然环境下的核桃有更好的识别效果。 展开更多
关键词 核桃识别 Swin Transformer 多层特征融合模块 YOLOX-S 深度学习
下载PDF
基于改进Deformable DETR的无人机视频流车辆目标检测算法
13
作者 江志鹏 王自全 +4 位作者 张永生 于英 程彬彬 赵龙海 张梦唯 《计算机工程与科学》 CSCD 北大核心 2024年第1期91-101,共11页
针对无人机视频流检测中小目标数量多、因图像传输质量较低而导致的上下文语义信息不充分、传统算法融合特征推理速度慢、数据集类别样本不均衡导致的训练效果差等问题,提出一种基于改进Deformable DETR的无人机视频流车辆目标检测算法... 针对无人机视频流检测中小目标数量多、因图像传输质量较低而导致的上下文语义信息不充分、传统算法融合特征推理速度慢、数据集类别样本不均衡导致的训练效果差等问题,提出一种基于改进Deformable DETR的无人机视频流车辆目标检测算法。在模型结构方面,该算法设计了跨尺度特征融合模块以增大感受野,提升小目标检测能力,并采用针对object_query的挤压-激励模块提升关键目标的响应值,减少重要目标的漏检与错检率;在数据处理方面,使用了在线困难样本挖掘技术,改善数据集中类别样本分布不均的问题。在UAVDT数据集上进行了实验,实验结果表明,改进后的算法相较于基线算法在平均检测精度上提升了1.5%,在小目标检测精度上提升了0.8%,并在保持参数量较少增长的情况下,维持了原有的检测速度。 展开更多
关键词 Deformable DETR 目标检测 跨尺度特征融合模块 object query挤压-激励 在线难样本挖掘
下载PDF
卷烟厂卷包车间工人违规作业行为检测方法
14
作者 刘恒 林虹宇 吴涛 《计算机科学》 CSCD 北大核心 2024年第S01期541-548,共8页
小目标检测一直是目标检测领域的难点,针对卷烟厂卷包车间摄像头安装位置较高、小目标检测精度低和总体检测精度较低的问题,提出了一种改进的YOLOv8n目标检测算法YOLOv8n-FIAL。首先使用添加通道重排机制的C2fg模块代替原本C2f模块,提... 小目标检测一直是目标检测领域的难点,针对卷烟厂卷包车间摄像头安装位置较高、小目标检测精度低和总体检测精度较低的问题,提出了一种改进的YOLOv8n目标检测算法YOLOv8n-FIAL。首先使用添加通道重排机制的C2fg模块代替原本C2f模块,提高特征学习能力,使用自适应通道特征融合模块代替YOLOv8n算法Neck部分的Concate操作,使特征融合更加充分;然后增加小目标检测层,提高小目标检测精度,降低漏检率;最后使用Focal-EIOU损失函数替换原来的CIOU损失函数,平衡锚框与真实框重叠较大的高质量锚框的数量远少于低质量锚框训练实例不平衡的问题。实验结果表明,在自制的卷烟厂工人违规作业数据集上,所提出的YOLOv8n-FIAL检测方法相比原始的YOLOv8n方法的总体平均精度均值提升了7.6%,对口鼻、手拿手机和衣服领口这3类小目标平均精度均值提升最大,分别提升了8.3%,8%和9.6%;在公共数据集VOC2007上,YOLOv8n-FIAL算法相比YOLOv8n算法的总体平均精度均值提升了1.6%。 展开更多
关键词 卷包车间 小目标检测 YOLOv8n YOLOv8n-FIAL 自适应通道特征融合模块
下载PDF
基于BM-TransUNet的咽后壁识别分割
15
作者 王世刚 孙静雯 《计算机系统应用》 2024年第7期94-102,共9页
图像分割经历了从基于传统的阈值分割等方法逐步发展到基于卷积神经网络的方法.传统的卷积神经网络在分割领域中表现突出,但训练速度慢、分割精度不够高等局限性也逐渐显现.为了克服这些局限性,本文在TransUNet网络的基础上进行改进,提... 图像分割经历了从基于传统的阈值分割等方法逐步发展到基于卷积神经网络的方法.传统的卷积神经网络在分割领域中表现突出,但训练速度慢、分割精度不够高等局限性也逐渐显现.为了克服这些局限性,本文在TransUNet网络的基础上进行改进,提出了基于BM-TransUNet网络的图像分割识别方法,在TransUNet网络的在第1层之后加上深度可分离卷积模块,并在编码器下采样的卷积层后引入注意力机制模块,让算法更好地探索分割对象特征,同时在编码器与解码器之间引入多尺度特征融合模块FPN.本文基于自制的咽后壁数据集,用于图像分割训练,并将训练后的BM-TransUNet网络与多种传统分割网络的效果进行对比.实验结果表明,相比于其他传统的深度学习模型,BM-TransUNet网络的识别方法具有较高的分类准确性和泛化能力,精确度Precision和Dice系数分别达到了93.61%和90.76%,显示出较好的计算效率,能有效地应用于分割任务. 展开更多
关键词 BM-TransUNet网络 图像分割 注意力机制模块 多尺度特征融合模块 咽后壁数据集
下载PDF
基于区域语义和边缘信息融合的作物苗期植株分割模型 被引量:10
16
作者 廖娟 陈民慧 +3 位作者 张锴 邹禹 张顺 朱德泉 《农业机械学报》 EI CAS CSCD 北大核心 2021年第12期171-181,共11页
为在自然环境下准确分割作物苗期植株,实现苗期植株定位及其表型自动化测量,本文提出一种融合目标区域语义和边缘信息的作物苗期植株分割网络模型。以U-Net网络构建主干网络,基于侧边深度监督机制,引导主干网络在提取特征时能感知植株... 为在自然环境下准确分割作物苗期植株,实现苗期植株定位及其表型自动化测量,本文提出一种融合目标区域语义和边缘信息的作物苗期植株分割网络模型。以U-Net网络构建主干网络,基于侧边深度监督机制,引导主干网络在提取特征时能感知植株边缘信息;利用空间空洞特征金字塔构建特征融合模块,融合主干网络和边缘感知模块提取的特征,融合后的特征图具有足够的细节信息和更强的语义信息;联合边缘感知的损失与特征融合的损失,构建联合损失函数,用于整体网络优化。实验结果表明,本文模型对不同数据集的作物植株的语义分割像素准确率高达0.962,平均交并比达到0.932;与U-Net、SegNet、PSPNet、DeepLabV3模型相比,本文模型在不同数据集上平均交并比最高提升0.07,对自然环境下作物苗期植株具有良好的分割效果和泛化能力,可为植株定位、对靶喷药、长势识别等应用提供重要依据。 展开更多
关键词 作物苗期 植株分割 U-Net网络 区域语义信息 边缘感知模块 特征融合模块
下载PDF
先验引导的特征金字塔阴影检测网络
17
作者 王健 陈舒涵 +2 位作者 徐秀奇 王奔 胡学龙 《信号处理》 CSCD 北大核心 2020年第9期1503-1510,共8页
阴影检测向来是计算机视觉领域的一个基础性挑战。它需要网络理解图像的全局语义和局部细节信息。本文提出了一种检测阴影区域的先验特征金字塔网络结构。该网络搭建了先验加权模块来提取图像中蕴含的阴影先验信息,通过使用阴影先验信... 阴影检测向来是计算机视觉领域的一个基础性挑战。它需要网络理解图像的全局语义和局部细节信息。本文提出了一种检测阴影区域的先验特征金字塔网络结构。该网络搭建了先验加权模块来提取图像中蕴含的阴影先验信息,通过使用阴影先验信息加权卷积特征,引导网络学习到阴影区域。同时,该网络还应用了特征融合模块来融合粗略的语义信息和自上而下路径中的精细特征,并且加入了后处理,进一步优化网络的预测结果。本文在两个公开的阴影检测基准数据集上进行了实验来评估其网络性能。实验表明,本文的方法能够更准确地检测到阴影,和过去最先进的方法相比也表现出色,在SBU数据集上正确率达到了96.6%,平衡检测错误因子为6.22。 展开更多
关键词 全局图像语义 先验加权模块 特征融合模块 阴影先验信息 阴影检测
下载PDF
基于多模态图像信息的变电设备红外分割方法 被引量:1
18
作者 张志超 左雷鹏 +2 位作者 邹捷 赵耀民 宋杨凡 《红外技术》 CSCD 北大核心 2023年第11期1198-1206,共9页
无人机拍摄下的红外图像中变电设备的分割精度直接影响着热故障诊断的结果,针对复杂红外背景下变电设备分割精度低的问题,提出了一种融合可见光和红外图像的多模态路径聚合网络(Multimodal Path Aggregation Network,MPAN)。首先提取并... 无人机拍摄下的红外图像中变电设备的分割精度直接影响着热故障诊断的结果,针对复杂红外背景下变电设备分割精度低的问题,提出了一种融合可见光和红外图像的多模态路径聚合网络(Multimodal Path Aggregation Network,MPAN)。首先提取并融合两种模态图像的特征,考虑到两种模态图像的特征空间存在差异,提出了自适应特征融合模块(Adaptive Feature Fuse Module,AFFM),以充分融合两种模态特征;对具有多尺度特征的主干网络增加自底向上的金字塔网络,并对横向连接的路径增强模块引入自注意力机制;最后使用dice系数优化掩膜损失函数。实验结果表明,多模态图像的融合能够增强分割性能,且验证了提出各模块的有效性,该模型能够显著提高红外图像中变电设备实例分割的准确率。 展开更多
关键词 实例分割 变电设备 红外图像 可见光图像 自适应特征融合模块 自注意力机制 dice系数
下载PDF
基于改进RCF的轨道边缘检测模型 被引量:1
19
作者 王运明 范晓宇 +1 位作者 王新屏 李卫东 《激光杂志》 CAS 北大核心 2023年第8期54-59,共6页
针对现有边缘检测模型检测复杂环境下的轨道边缘精度较低的问题,提出了一种基于改进RCF的轨道边缘检测模型。在RCF模型的基础上,去除深层的反卷积操作,增加特征融合模块,提升深层特征网络表达轨道边缘特征的能力,设计多感受野模块替换... 针对现有边缘检测模型检测复杂环境下的轨道边缘精度较低的问题,提出了一种基于改进RCF的轨道边缘检测模型。在RCF模型的基础上,去除深层的反卷积操作,增加特征融合模块,提升深层特征网络表达轨道边缘特征的能力,设计多感受野模块替换最后的concat层,增加有效感受野,引入高效注意力模块,提取有利于特征检测的通道,减少边缘检测的噪声。仿真结果表明,与HED、RCF模型相比,改进RCF模型检测轨道边缘的ODS分别提高了6.4%和1.1%、OIS分别提高了5.3%和0.7%,可更高效地检测轨道边缘。 展开更多
关键词 轨道边缘检测 RCF 特征融合模块 多感受野 高效注意力机制
原文传递
基于DBAFFNet的低照度图像增强
20
作者 罗凡 熊邦书 +1 位作者 余磊 汪婉灵 《应用科学学报》 CAS CSCD 北大核心 2023年第3期476-487,共12页
针对当前低照度图像增强后存在色偏、细节损失和噪声放大的问题,提出了基于双分支自适应特征融合网络的低照度图像增强方法。首先,设计自适应特征融合模块,在深层特征中融合更多细节和颜色信息;其次,构建通道及空间注意力模块,使网络着... 针对当前低照度图像增强后存在色偏、细节损失和噪声放大的问题,提出了基于双分支自适应特征融合网络的低照度图像增强方法。首先,设计自适应特征融合模块,在深层特征中融合更多细节和颜色信息;其次,构建通道及空间注意力模块,使网络着重于图像细节和颜色的恢复;最后,根据Retinex理论设计Poisson-Retinex损失函数,抑制图像的噪声,从而提高图像的增强效果。在多个数据集上的主观和客观对比结果表明,所提方法不仅能恢复增强图像的颜色和细节,而且能更好地抑制噪声,从而获得良好的增强效果。 展开更多
关键词 低照度图像增强 自适应特征融合模块 注意力模块 RETINEX
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部