为减小切换瞬间电压和频率的暂态波动,提出了基于控制器状态跟随的微电网平滑切换控制方法.进入孤岛状态后,储能装置逆变器的控制方式由PQ控制转变为V/f控制,切换前使V/f控制器随时跟随PQ控制器的输出,避免切换瞬间控制器输出状态的跳变...为减小切换瞬间电压和频率的暂态波动,提出了基于控制器状态跟随的微电网平滑切换控制方法.进入孤岛状态后,储能装置逆变器的控制方式由PQ控制转变为V/f控制,切换前使V/f控制器随时跟随PQ控制器的输出,避免切换瞬间控制器输出状态的跳变.在DIg SILENT Power Factory软件平台建立含光伏单元和蓄电池的微电网模型,仿真微电网由并网模式转为孤岛模式运行.仿真结果表明,该方法能够有效抑制切换过程中电压和频率的波动,减小暂态过程对电网的冲击.展开更多
新能源并网逆变器的自同步电压源控制技术对构建以新能源为主体的新型电力系统具有重大意义,然而当弱电网电压发生跌落时,传统的自同步控制方法在低电压穿越(low voltage ride through,LVRT)过程中会出现由于电网阻抗大、相角差大等引...新能源并网逆变器的自同步电压源控制技术对构建以新能源为主体的新型电力系统具有重大意义,然而当弱电网电压发生跌落时,传统的自同步控制方法在低电压穿越(low voltage ride through,LVRT)过程中会出现由于电网阻抗大、相角差大等引起的瞬态电流冲击大、弱电网电压无法维持稳定、电压-电流控制能力须相互平衡等一系列问题。推导了低电压跌落时弱电网电压矢量与弱电网阻抗、并网电流之间的关系以及影响因素,进而提出了一种基于暂稳态阻抗重塑的多状态跟随自同步电压源LVRT控制方法,通过稳态阻抗来平衡电压和电流之间的控制能力;通过暂态阻抗重塑保证了整个过程的电压与电流瞬态控制与平滑过渡能力。为了进一步保证弱网下跌落和恢复过渡过程的平滑切换与稳定运行,提出了基于多状态跟随的暂态控制策略,优先发出无功支撑电网电压,并补偿相角和幅值突变带来的瞬态过电压和过电流冲击,帮助电网电压平稳过渡。最后,在Matlab/Simulink中验证了所提控制方法的正确性与有效性。展开更多
文摘为减小切换瞬间电压和频率的暂态波动,提出了基于控制器状态跟随的微电网平滑切换控制方法.进入孤岛状态后,储能装置逆变器的控制方式由PQ控制转变为V/f控制,切换前使V/f控制器随时跟随PQ控制器的输出,避免切换瞬间控制器输出状态的跳变.在DIg SILENT Power Factory软件平台建立含光伏单元和蓄电池的微电网模型,仿真微电网由并网模式转为孤岛模式运行.仿真结果表明,该方法能够有效抑制切换过程中电压和频率的波动,减小暂态过程对电网的冲击.
文摘新能源并网逆变器的自同步电压源控制技术对构建以新能源为主体的新型电力系统具有重大意义,然而当弱电网电压发生跌落时,传统的自同步控制方法在低电压穿越(low voltage ride through,LVRT)过程中会出现由于电网阻抗大、相角差大等引起的瞬态电流冲击大、弱电网电压无法维持稳定、电压-电流控制能力须相互平衡等一系列问题。推导了低电压跌落时弱电网电压矢量与弱电网阻抗、并网电流之间的关系以及影响因素,进而提出了一种基于暂稳态阻抗重塑的多状态跟随自同步电压源LVRT控制方法,通过稳态阻抗来平衡电压和电流之间的控制能力;通过暂态阻抗重塑保证了整个过程的电压与电流瞬态控制与平滑过渡能力。为了进一步保证弱网下跌落和恢复过渡过程的平滑切换与稳定运行,提出了基于多状态跟随的暂态控制策略,优先发出无功支撑电网电压,并补偿相角和幅值突变带来的瞬态过电压和过电流冲击,帮助电网电压平稳过渡。最后,在Matlab/Simulink中验证了所提控制方法的正确性与有效性。