[Objective] The study was conducted to optimize the operation parameters of water control equipment for deep-litter beddings. [Method] A four-factor three-level orthogonal design was adopted to optimize experimental t...[Objective] The study was conducted to optimize the operation parameters of water control equipment for deep-litter beddings. [Method] A four-factor three-level orthogonal design was adopted to optimize experimental temperature, stopping time of aeration, aeration time and aeration rate by 9 groups of experiments, so as to improve the water removal efficiency of adopted mixed and reduce operation energy consumption. [Result] The average water contents in the mixed bedding under 3 temperatures decreased by 4.58% ±2.91%, 13.17% ±3.77% and 10.8% ±7.72%, respectively; the highest water removal efficiency could be achieved under an experimental temperature at 45 ℃, stopping time of aeration of 15 min, aeration time of 7 min, and an aeration rate at 4 m^3/min, which formed the optimal factor combination mode of the operation parameter of the water control equipment; the effects of various experimental factors on water content in the bedding were in order of aeration ratetemperatureaeration timestopping time of aeration; and the effects of various experimental factors on water removal efficiency in the bedding were in order of temperatureaeration rateaeration timestopping time of aeration. [Conclusion] After the optimization of operation parameters of the water control equipment for the deep-litter bedding, water removal efficiency of the mixed bedding could be improved, and the operation energy consumption of the equipment could be reduced.展开更多
[Objective] The behavior of eating, drinking, defecating and peeing of 1 500 pigs in a large-scale microbial fermentation bed-equipped piggery was observed. We hoped to find some simple indicators that could reflect t...[Objective] The behavior of eating, drinking, defecating and peeing of 1 500 pigs in a large-scale microbial fermentation bed-equipped piggery was observed. We hoped to find some simple indicators that could reflect the health status of swinery and to provide experience for the swinery performance management in large-scale microbial fermentation bed-equipped piggery. [Method] The body weight (BW), daily BW gain, feed intake and other indicators of different-day-old pigs were recorded in details. Based on the recorded data, the models between BW, BW gain, average daily feed intake and feed/gain ratio and growth days (d) were established. In addition, the incidences of pox-like macula (dermatitis), diarrhea (gastrointestinal disease), cough (respiratory disease), stiff pig (malnutrition), conjunctivitis (eye disease) and foot inflection (trauma) among fattening pigs were also investigated. [Result] The BW range, average BW, daily BW gain, breeding days, daily feed intake range, average daily feed intake, staged feed intake, accumulated feed intake, feed/gain ratio and accumulated feed/gain ratio of different-day-old pigs were studied, respectively. Four dynamic models were established for the growth of pigs: (1) the BW (y)-age (x) mod- el: y=0.758 9x-19.883 (3=0.993 7); (2) the BW gain (y)-age (x) model: y=1.039 5x05051 (F=0.885 4); (3) the average daily feed intake (y)-age (x) model: y=0.023 5x-0.334 3 (F=0.991 7); (4) the feed/gain ratio (y)-age (x) model: y=0.022x+0.427 8 (P=0.988 5). Based on these models, the corresponding theoretical growth value of pigs at different growth stage could be predicted. The main diseases occurred among the swinery in the large-scale microbial fermentation bed piggery included pox-like macula (dermatitis), diarrhea (gastrointestinal disease), cough (respiratory disease), stiff pig (mal- nutrition), conjunctivitis (eye disease) and foot inflection (trauma). The deadly infec- tious diseases had been not found among the pigs. [Conclusion] When the actual BW, BW gain, average daily feed intake and feed/gain ratio were all lower than the theoretical values predicted by the models, the management should be enhanced. The average daily feed intake of 60 to 65-day-old pigs was lower than the theoretic value, indicating that the pigs could not adapt nicely to the fermentation bed at the very early stage. When the pigs grew up to 70 to 75 d old, the average daily feed intake was higher than the theoretical value, indicating that the pigs had adapted to the fermentation bed. In particularly, average daily feed intake of 75-day-old pigs was higher than the theoretical value by 21%. It was suggested the fermentation bed was conducive to the growth of pigs. Considering the occurrence of diseases among pigs, the overall incidence was relatively low. The incidence of each disease was all lower than 10% with little difficulty in treating. If the management of mattress was strength- ened, such as paying attention to feeding and keeping water clean, many diseases could heal by themselves.展开更多
The fattening pig house with fermentation bed had an area of 2 100 m2, and the area of fermentation bed was 1 900 m2 with a utilization rate of 91.4%, which was 45% higher than that of conventional pig house with surr...The fattening pig house with fermentation bed had an area of 2 100 m2, and the area of fermentation bed was 1 900 m2 with a utilization rate of 91.4%, which was 45% higher than that of conventional pig house with surrounding barrier. There was feeding trough around the house. The water troughs were set in the middle of the fermentation bed and of the feeding trough on the short sides of the house, separating feed and water. There were electric aluminum alloy shutters in both long sides of the house for ventilation, cooling and heat preservation. On both short sides, there were fans and wet curtains. The spray cooling devices were in- stalled outside the roof for cooling. The environmental control in the piggery, includ- ing light, temperature, water, humidity, carbon dioxide and ammonia, was realized to run by computer automatically. The coconut chaff and chaff configuration were used as mattress material, realizing the advantages of fermentation bed, such as no smell, zero emission, high-quality meat, saving labor, controlling disease, no drug residue, producing fertilizer, intelligent control, mechanized operation, etc.展开更多
The design and assembly of environmental monitoring and control system for large-scale pig house with fermentation bed helped to solve the problem of environmental automatic control in piggery.The sensors would monito...The design and assembly of environmental monitoring and control system for large-scale pig house with fermentation bed helped to solve the problem of environmental automatic control in piggery.The sensors would monitor the temperature,humidity,light,wind direction,wind speed,CO2,NH3and other parameters.On-line real-time data collection was achieved.The expert system was constructed to control the temperature in piggery below 30℃,to control the air and mattress humidities higher than 65%.Under the conditions of different season or different wind speed,even in day and night,the control actuators were different.The actuators included fanning wet curtain,lighting,micro spraying,spraying,propeller fan,electric aluminum alloy shutter and spraying systems on the roof.The actuators were integrated,and they control the piggery environment simultaneously.The system also designed the remote video monitor interface,parameter-monitoring curved interface and operation interface,which provided a good man-machine interface.展开更多
ln this research, the whole contact-type large-scale sow house with fer-mentation bed was designed. The planning area of the entire piggery was 5 700 m2 with workplace and green belts. The sow house was 93 m long and ...ln this research, the whole contact-type large-scale sow house with fer-mentation bed was designed. The planning area of the entire piggery was 5 700 m2 with workplace and green belts. The sow house was 93 m long and 33 m wide, a total of 3 069 m2, including office area of 60 m2 and aisle area of 107 m2. The fer-mentation bed had an area of 2 902 m2 with length of 88.7 m and width of 27.7 m. lts area accounted for 95% of the total area of sow house. The fermentation mattress had a depth of 80 cm, and had a volume of 2 321 m3, equivalent to 733 t of coconut chaff and rice chaff. On a large fermentation bed, the areas for boars, replacement gilts, pregnant sows, obstetric tables, nursery pigs, etc. were designed. The large-scale sow house with fermentation bed was equipped with the automatic feeding system, automatic sprinkler system, automatic positioning column for preg-nant sows, sows' obstetric table system, fanning wet curtain cooling system, video monitoring system, environmental monitoring (light, temperature, water, humidity, CO2, NH3) and automatic control system. Every farming area was equipped with feeding trough and water trough. The water though was fixed with overflow pipe for removing the extra water. The house could hold 500-head sows. Each sow occu-pied 4.9 m2 of the fermentation bed in average. The designed sow house had a maximum annual output of 10 000 piglets.展开更多
基金Supported by the Fund for Independent Innovation of Agricultural Sciences in Jiangsu Province(CX(13)3073)Jiangsu Science and Technology Support Program(BE2014-342-1)~~
文摘[Objective] The study was conducted to optimize the operation parameters of water control equipment for deep-litter beddings. [Method] A four-factor three-level orthogonal design was adopted to optimize experimental temperature, stopping time of aeration, aeration time and aeration rate by 9 groups of experiments, so as to improve the water removal efficiency of adopted mixed and reduce operation energy consumption. [Result] The average water contents in the mixed bedding under 3 temperatures decreased by 4.58% ±2.91%, 13.17% ±3.77% and 10.8% ±7.72%, respectively; the highest water removal efficiency could be achieved under an experimental temperature at 45 ℃, stopping time of aeration of 15 min, aeration time of 7 min, and an aeration rate at 4 m^3/min, which formed the optimal factor combination mode of the operation parameter of the water control equipment; the effects of various experimental factors on water content in the bedding were in order of aeration ratetemperatureaeration timestopping time of aeration; and the effects of various experimental factors on water removal efficiency in the bedding were in order of temperatureaeration rateaeration timestopping time of aeration. [Conclusion] After the optimization of operation parameters of the water control equipment for the deep-litter bedding, water removal efficiency of the mixed bedding could be improved, and the operation energy consumption of the equipment could be reduced.
基金Supported by International Science and Technology Cooperation Project of China(2012DFA31120)Special Fund for Agro-scientific Research in the Public Interest(201303094)National Key Technology Research and Development Program(2012BAD14B15)~~
文摘[Objective] The behavior of eating, drinking, defecating and peeing of 1 500 pigs in a large-scale microbial fermentation bed-equipped piggery was observed. We hoped to find some simple indicators that could reflect the health status of swinery and to provide experience for the swinery performance management in large-scale microbial fermentation bed-equipped piggery. [Method] The body weight (BW), daily BW gain, feed intake and other indicators of different-day-old pigs were recorded in details. Based on the recorded data, the models between BW, BW gain, average daily feed intake and feed/gain ratio and growth days (d) were established. In addition, the incidences of pox-like macula (dermatitis), diarrhea (gastrointestinal disease), cough (respiratory disease), stiff pig (malnutrition), conjunctivitis (eye disease) and foot inflection (trauma) among fattening pigs were also investigated. [Result] The BW range, average BW, daily BW gain, breeding days, daily feed intake range, average daily feed intake, staged feed intake, accumulated feed intake, feed/gain ratio and accumulated feed/gain ratio of different-day-old pigs were studied, respectively. Four dynamic models were established for the growth of pigs: (1) the BW (y)-age (x) mod- el: y=0.758 9x-19.883 (3=0.993 7); (2) the BW gain (y)-age (x) model: y=1.039 5x05051 (F=0.885 4); (3) the average daily feed intake (y)-age (x) model: y=0.023 5x-0.334 3 (F=0.991 7); (4) the feed/gain ratio (y)-age (x) model: y=0.022x+0.427 8 (P=0.988 5). Based on these models, the corresponding theoretical growth value of pigs at different growth stage could be predicted. The main diseases occurred among the swinery in the large-scale microbial fermentation bed piggery included pox-like macula (dermatitis), diarrhea (gastrointestinal disease), cough (respiratory disease), stiff pig (mal- nutrition), conjunctivitis (eye disease) and foot inflection (trauma). The deadly infec- tious diseases had been not found among the pigs. [Conclusion] When the actual BW, BW gain, average daily feed intake and feed/gain ratio were all lower than the theoretical values predicted by the models, the management should be enhanced. The average daily feed intake of 60 to 65-day-old pigs was lower than the theoretic value, indicating that the pigs could not adapt nicely to the fermentation bed at the very early stage. When the pigs grew up to 70 to 75 d old, the average daily feed intake was higher than the theoretical value, indicating that the pigs had adapted to the fermentation bed. In particularly, average daily feed intake of 75-day-old pigs was higher than the theoretical value by 21%. It was suggested the fermentation bed was conducive to the growth of pigs. Considering the occurrence of diseases among pigs, the overall incidence was relatively low. The incidence of each disease was all lower than 10% with little difficulty in treating. If the management of mattress was strength- ened, such as paying attention to feeding and keeping water clean, many diseases could heal by themselves.
基金Supported by Chinese Ministry of Science and Technology(2012DFA31120)Natural Science Foundation of China(NSFC)(31370059)+2 种基金948 Project of Chinese Ministry of Agriculture(2011-G25)973 Program Earlier Research Project(2011CB111607)Project of Agriculture Science and Technology Achievement Transformation(2010GB2C400220)~~
文摘The fattening pig house with fermentation bed had an area of 2 100 m2, and the area of fermentation bed was 1 900 m2 with a utilization rate of 91.4%, which was 45% higher than that of conventional pig house with surrounding barrier. There was feeding trough around the house. The water troughs were set in the middle of the fermentation bed and of the feeding trough on the short sides of the house, separating feed and water. There were electric aluminum alloy shutters in both long sides of the house for ventilation, cooling and heat preservation. On both short sides, there were fans and wet curtains. The spray cooling devices were in- stalled outside the roof for cooling. The environmental control in the piggery, includ- ing light, temperature, water, humidity, carbon dioxide and ammonia, was realized to run by computer automatically. The coconut chaff and chaff configuration were used as mattress material, realizing the advantages of fermentation bed, such as no smell, zero emission, high-quality meat, saving labor, controlling disease, no drug residue, producing fertilizer, intelligent control, mechanized operation, etc.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest(201303094)International Science and Technology Cooperation Project of China(2012DFA31120)National Key Technology Research and Development Program(2012BAD14B15)
文摘The design and assembly of environmental monitoring and control system for large-scale pig house with fermentation bed helped to solve the problem of environmental automatic control in piggery.The sensors would monitor the temperature,humidity,light,wind direction,wind speed,CO2,NH3and other parameters.On-line real-time data collection was achieved.The expert system was constructed to control the temperature in piggery below 30℃,to control the air and mattress humidities higher than 65%.Under the conditions of different season or different wind speed,even in day and night,the control actuators were different.The actuators included fanning wet curtain,lighting,micro spraying,spraying,propeller fan,electric aluminum alloy shutter and spraying systems on the roof.The actuators were integrated,and they control the piggery environment simultaneously.The system also designed the remote video monitor interface,parameter-monitoring curved interface and operation interface,which provided a good man-machine interface.
基金Supported by Chinese Ministry of Science and Technology(2012DFA31120)Natural Science Foundation of China(NSFC)(31370059)+2 种基金948 Project of Chinese Ministry of Agriculture(2011-G25)973 Program Earlier Research Project(2011CB111607)Project of Agriculture Science and Technology Achievement Transformation(2010GB2C400220)
文摘ln this research, the whole contact-type large-scale sow house with fer-mentation bed was designed. The planning area of the entire piggery was 5 700 m2 with workplace and green belts. The sow house was 93 m long and 33 m wide, a total of 3 069 m2, including office area of 60 m2 and aisle area of 107 m2. The fer-mentation bed had an area of 2 902 m2 with length of 88.7 m and width of 27.7 m. lts area accounted for 95% of the total area of sow house. The fermentation mattress had a depth of 80 cm, and had a volume of 2 321 m3, equivalent to 733 t of coconut chaff and rice chaff. On a large fermentation bed, the areas for boars, replacement gilts, pregnant sows, obstetric tables, nursery pigs, etc. were designed. The large-scale sow house with fermentation bed was equipped with the automatic feeding system, automatic sprinkler system, automatic positioning column for preg-nant sows, sows' obstetric table system, fanning wet curtain cooling system, video monitoring system, environmental monitoring (light, temperature, water, humidity, CO2, NH3) and automatic control system. Every farming area was equipped with feeding trough and water trough. The water though was fixed with overflow pipe for removing the extra water. The house could hold 500-head sows. Each sow occu-pied 4.9 m2 of the fermentation bed in average. The designed sow house had a maximum annual output of 10 000 piglets.