期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于NMF的文本聚类方法 被引量:9
1
作者 黄钢石 陆建江 张亚非 《计算机工程》 CAS CSCD 北大核心 2004年第11期113-114,176,共3页
提出一种基于非负矩阵分解的文本聚类方法。该方法利用NMF分解项-文本矩阵来降低特征空间维数,并得到文本向量在概念空间上的表示,在此基础上应用聚类算法。实验表明,基于NMF的文本聚类方法能够提高文本聚类精度。
关键词 文本聚类 非负矩阵分解 球形k-均值算法 自然语言处理
下载PDF
Matrix dimensionality reduction for mining typical user profiles 被引量:2
2
作者 陆建江 徐宝文 +1 位作者 黄刚石 张亚非 《Journal of Southeast University(English Edition)》 EI CAS 2003年第3期231-235,共5页
Recently clustering techniques have been used to automatically discover typical user profiles. In general, it is a challenging problem to design effective similarity measure between the session vectors which are usual... Recently clustering techniques have been used to automatically discover typical user profiles. In general, it is a challenging problem to design effective similarity measure between the session vectors which are usually high-dimensional and sparse. Two approaches for mining typical user profiles, based on matrix dimensionality reduction, are presented. In these approaches, non-negative matrix factorization is applied to reduce dimensionality of the session-URL matrix, and the projecting vectors of the user-session vectors are clustered into typical user-session profiles using the spherical k -means algorithm. The results show that two algorithms are successful in mining many typical user profiles in the user sessions. 展开更多
关键词 Web usage mining non-negative matrix factorization spherical k-means algorithm
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部