期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于数学形态滤波的植被光谱去噪方法研究 被引量:3
1
作者 张霞 戚文超 孙伟超 《遥感技术与应用》 CSCD 北大核心 2016年第5期846-854,863,共10页
光谱维噪声使地物光谱扭曲或变形,中心波长偏移,影响地物信息提取和地表参量反演的精度。对光谱维噪声进行滤波处理,有利于改善遥感数据定量应用的效果。由于数学形态滤波的原理简单且较易实现,被应用到植被光谱以及有机化合物光谱的研... 光谱维噪声使地物光谱扭曲或变形,中心波长偏移,影响地物信息提取和地表参量反演的精度。对光谱维噪声进行滤波处理,有利于改善遥感数据定量应用的效果。由于数学形态滤波的原理简单且较易实现,被应用到植被光谱以及有机化合物光谱的研究中。运用数学形态滤波对地面实测小麦光谱去噪,一方面对滤波后的光谱进行噪声和波形相似度的直观分析,另一方面通过植被指数反演小麦理化参量进行定量应用评价。结果表明,与传统Savitzky-Golay滤波相比,在可见-近红外波段范围内,数学形态滤波去噪后的光谱能够保持可见—近红外波段原始光谱的固有特征,叶面积指数和叶绿素的反演精度比去噪前有小幅提升,主要原因是实测光谱在该谱段范围的噪声影响很小;在短波红外波段范围内,数学形态滤波能有效去除短波红外大尺度噪声,提高叶片含水量的反演精度。而传统Savitzky-Golay滤波只能削弱短波红外大尺度噪声。广义形态滤波去噪后植被指数和叶片含水量之间的R2最高可达0.5130(去噪前0.3753),叶片含水量的反演值与实测值之间的R2最高可达0.4221(去噪前0.3097),RMSE为0.0243(去噪前0.0318),优于传统Savitzky-Golay滤波。 展开更多
关键词 高光谱遥感 光谱维去噪 数学形态滤波 理化参量反演
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部