在一般教科书中积分中值定理都叙述为:设f(x)在[a,b]上连续,g(x)在[a,b]上可积且不变号,则存在ξ∈[a,b),使得 (integral from n=a to b)f(x)g(x)dx=f(ξ)(integral from n=a to b)g(x)dx。杨新民在[1]中提出了相反的问题:若f(x)在[a,b...在一般教科书中积分中值定理都叙述为:设f(x)在[a,b]上连续,g(x)在[a,b]上可积且不变号,则存在ξ∈[a,b),使得 (integral from n=a to b)f(x)g(x)dx=f(ξ)(integral from n=a to b)g(x)dx。杨新民在[1]中提出了相反的问题:若f(x)在[a,b]上连续,g(x)在[a,b]上可积且不变号,对[a,b)内每一点ξ能否找到c,d∈(a,b),满足c【ξ【d,使得下式成立?展开更多
文摘在一般教科书中积分中值定理都叙述为:设f(x)在[a,b]上连续,g(x)在[a,b]上可积且不变号,则存在ξ∈[a,b),使得 (integral from n=a to b)f(x)g(x)dx=f(ξ)(integral from n=a to b)g(x)dx。杨新民在[1]中提出了相反的问题:若f(x)在[a,b]上连续,g(x)在[a,b]上可积且不变号,对[a,b)内每一点ξ能否找到c,d∈(a,b),满足c【ξ【d,使得下式成立?