The stability of dams and their foundations is an important problem to which dam engineers have paid close attention over the years. This paper presented two methods to analyze the stability of a gravity dam and its f...The stability of dams and their foundations is an important problem to which dam engineers have paid close attention over the years. This paper presented two methods to analyze the stability of a gravity dam and its foundation. The direct analysis method was based on a rigid limit equilibrium method which regarded both dam and the rock foundation as undeformable rigid bodies. In this method, the safety factor of potential sliding surfaces was computed directly. The second method, the indirect analysis method, was based on elasto-plastic theory and employs nonlinear finite element method (FEM) in the analysis of stresses and deformation in the dam and its foundation. The determination of the safety degree of the structure was based on the convergence and abrupt the change criterion. The results obtained showed that structures' constituent material behavior played an active role in the failure of engineered structures in addition to the imposed load.展开更多
In order to identify aquifer parameter,authors develops an improved combinatorial method called best chromosome clone plus younger generation chromosome prepotency genetic algorithm (BCC-YGCP-GA), based on a decimal s...In order to identify aquifer parameter,authors develops an improved combinatorial method called best chromosome clone plus younger generation chromosome prepotency genetic algorithm (BCC-YGCP-GA), based on a decimal system simple genetic algorithm (SGA). The paper takes unsteady state flows in a two dimensional, inhomogeneous, confined aquifer for a ideal model, and utilizes SGA and BCC-YGCP-GA coupled to finite element method for identifying aquifer hydraulic conductivity K 1 ,K 2 ,K 3 and storage S 1 ,S 2 ,S 3 , respectively. It is shown from the result that GSA does not reach convergence with 100 generations, whereas convergence rate of BCC-YGCD-GA is very fast. Objective function value calculated by BCC-YGCD-GA is 0 001 29 with 100 generations, and hydraulic conductivity and storage of three zones are almost equal to the "true" values of ideal model.展开更多
Structure of a rotor and other design parameters are all viewed as constant using finite element software to analyze reliability of the rotor. In this case,reliability analysis of the rotor can't be realized for d...Structure of a rotor and other design parameters are all viewed as constant using finite element software to analyze reliability of the rotor. In this case,reliability analysis of the rotor can't be realized for design parameters as random. Based on theory of elastic mechanics,starting with the micro element of the rotor,stress formulas on arbitrary point of turbine disc with equal and variable thickness are deducted under the influence of centrifugal force and temperature field on rotor system simultaneously. Considering the random of structural size of the turbine rotor,temperature stress,rotating speed,external loads and material strength,the reliability of a rotor is studied with stress-strength interference model,integral stochastic finite element method(ISFEM) and Gram-Charlier series method,and random structural reliability of the rotor is computed with higher accuracy.展开更多
In this paper, the failure mechanisms of full-size concrete filled steel tubes(CFST) under uniaxial compression were investigated with nonlinear finite element method. Existing experimental results were employed to ve...In this paper, the failure mechanisms of full-size concrete filled steel tubes(CFST) under uniaxial compression were investigated with nonlinear finite element method. Existing experimental results were employed to verify the validity of the finite element models of CFST specimens. Then, the numerical analysis was further conducted to study the mechanical behaviors of full-size CFST columns with circular and square cross sections under uniaxial compression. The simulation results indicate that the distribution of the contact pressure between circular steel tube and core concrete is much more uniform than that between square steel tube and concrete, resulting in much higher confinement and more efficient interaction between steel tube and core concrete in circular CFST columns, as well as ultimate load capacity and ultimate displacement. Extensive parametric analysis was also conducted to examine the effect of various parameters on the uniaxial compression behaviors of circular and square CFST columns.展开更多
文摘The stability of dams and their foundations is an important problem to which dam engineers have paid close attention over the years. This paper presented two methods to analyze the stability of a gravity dam and its foundation. The direct analysis method was based on a rigid limit equilibrium method which regarded both dam and the rock foundation as undeformable rigid bodies. In this method, the safety factor of potential sliding surfaces was computed directly. The second method, the indirect analysis method, was based on elasto-plastic theory and employs nonlinear finite element method (FEM) in the analysis of stresses and deformation in the dam and its foundation. The determination of the safety degree of the structure was based on the convergence and abrupt the change criterion. The results obtained showed that structures' constituent material behavior played an active role in the failure of engineered structures in addition to the imposed load.
文摘In order to identify aquifer parameter,authors develops an improved combinatorial method called best chromosome clone plus younger generation chromosome prepotency genetic algorithm (BCC-YGCP-GA), based on a decimal system simple genetic algorithm (SGA). The paper takes unsteady state flows in a two dimensional, inhomogeneous, confined aquifer for a ideal model, and utilizes SGA and BCC-YGCP-GA coupled to finite element method for identifying aquifer hydraulic conductivity K 1 ,K 2 ,K 3 and storage S 1 ,S 2 ,S 3 , respectively. It is shown from the result that GSA does not reach convergence with 100 generations, whereas convergence rate of BCC-YGCD-GA is very fast. Objective function value calculated by BCC-YGCD-GA is 0 001 29 with 100 generations, and hydraulic conductivity and storage of three zones are almost equal to the "true" values of ideal model.
基金Chinese National High-tech Research Proceeding Plan(2007AA04Z442)The Major Project of Chinese National Natural Science Foundation (No. 50875039)
文摘Structure of a rotor and other design parameters are all viewed as constant using finite element software to analyze reliability of the rotor. In this case,reliability analysis of the rotor can't be realized for design parameters as random. Based on theory of elastic mechanics,starting with the micro element of the rotor,stress formulas on arbitrary point of turbine disc with equal and variable thickness are deducted under the influence of centrifugal force and temperature field on rotor system simultaneously. Considering the random of structural size of the turbine rotor,temperature stress,rotating speed,external loads and material strength,the reliability of a rotor is studied with stress-strength interference model,integral stochastic finite element method(ISFEM) and Gram-Charlier series method,and random structural reliability of the rotor is computed with higher accuracy.
基金supported by the National Natural Science Foundation of China(Grant No.51278118)the Natural Science Foundation of Jiangsu Province(Grant No.BK2012756)the Scientific Research Project of Ministry of Education(Grant No.113029A)
文摘In this paper, the failure mechanisms of full-size concrete filled steel tubes(CFST) under uniaxial compression were investigated with nonlinear finite element method. Existing experimental results were employed to verify the validity of the finite element models of CFST specimens. Then, the numerical analysis was further conducted to study the mechanical behaviors of full-size CFST columns with circular and square cross sections under uniaxial compression. The simulation results indicate that the distribution of the contact pressure between circular steel tube and core concrete is much more uniform than that between square steel tube and concrete, resulting in much higher confinement and more efficient interaction between steel tube and core concrete in circular CFST columns, as well as ultimate load capacity and ultimate displacement. Extensive parametric analysis was also conducted to examine the effect of various parameters on the uniaxial compression behaviors of circular and square CFST columns.