The unity between physics and biology refers to that the inorganic systems: the Solar System, galaxies and artificial systems have the same structures and functions as the organisms. The development of science and te...The unity between physics and biology refers to that the inorganic systems: the Solar System, galaxies and artificial systems have the same structures and functions as the organisms. The development of science and technology is demonstrating the intense unification trends of physics and biology and a holistic science and technology era is about to start. The physics and biology unify on the basis of the four seasons' law, which is the most important rule of the universe. Life is defined as the four seasons' whole with the structure and process of four seasons. The organism is basically structured into a dual four-season body by state-varying, state-stabilizing and control organizations. Animals, the Solar System and the earth are all the dual four-season bodies. In the unity between physics and biology, the inorganic life materials and inorganic life body can be manufactured artificially.展开更多
Olivine-type LiFePO4/C composite cathode materials were synthesized by a solid-state reaction method in an inert atmosphere. The glucose was added as conductive precursors before the formation of the crystalline phase...Olivine-type LiFePO4/C composite cathode materials were synthesized by a solid-state reaction method in an inert atmosphere. The glucose was added as conductive precursors before the formation of the crystalline phase. The effects of glucose content on the properties of as-synthesized cathode materials were investigated. The crystal structure and the electrochemical performance were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), laser particle-size distribution measurement and electrochemical performance testing. The material has a single crystal olivine structure with grain-sizes ca. 100-200 nm. SEM micrographs and the corresponding energy dispersive spectrometer (EDS) data confirm that the carbon particulates produced by glucose pyrogenation are uniformly dispersed among the LiFePO4 grains, ensuring a good electronic contact. Impedance spectroscopy was used to investigate the ohmic and kinetic contributions to the cell performance. It is found that increasing the carbon content leads to a reduction of the cell impedance due to the reduction of the charge transfer resistance. The galvanostatically charge and discharge tests show that the material obtained by adding 10% C (by mass) gives a maximum discharge capacity of 140.8mA·h·g^-1 at the same rate (C/10). The material also displays a more stable cycle-life than the others.展开更多
The contemporary demand for reducing carbon emission is changing the way architects design buildings, thus influencing a wide range of new solutions. In this paper, the author presents a method that intends to contrib...The contemporary demand for reducing carbon emission is changing the way architects design buildings, thus influencing a wide range of new solutions. In this paper, the author presents a method that intends to contribute for the discussion of recent strategies that lower the buildings' consumption of energy. The study establishes three priority parameters to analyze the faqades based on the materials, the practices and the thermal behavior. Each parameter is measured separately scaled from artificial to natural building materials, local to distant practices and insulation to inertia. The design of facades has been evolving to follow complex regulations that aim to increase the required sustainable performance of buildings. Scientific data is measurable individually by each parameter, though the cross influence between parameters raise the level of complexity. Shading systems, solar passive energy influence the measurement but the growing use of renewable energies affects the measurements of energy consumption. Each design responds differently to climatic conditions, and requires complex analyses considering the specificity of the natural environment and cultural context. The discussion makes use of scientific data that influences architectural design, the research requires a broader perception thus including cultural aspects. Recent high tech insulating systems have an effect on design solutions that characterize biophilia (human love of nature). The wisdom of traditional local solutions tested over generations holds cultural aspects of biomimicry (nature as model). The aim is to discuss whether the framework based on biophilia and biomimicry is useful for the research.展开更多
The paper analyze and comprehensive evaluate on the characteristics of the product life cycle in each link of the green product design and the life cycle, has obtained a series of design green design optimization meth...The paper analyze and comprehensive evaluate on the characteristics of the product life cycle in each link of the green product design and the life cycle, has obtained a series of design green design optimization method. In the choice of materials, this paper presented a method for the re-combination of recycled materials. In the recovery of the product it proposes the establishment of recycling system, and expounds the concept upgrade recovery. Design and manufacturing of green products and green recycling industry is the two most important link in green circular economic system, whether or not the coordinated development of the two sectors, is the key to the success or failure of the strategy of sustainable development.展开更多
The physical-mechanical,chemical,and durability characteristics of alkali-activated materials(AAMs)have been widely investigated.However,a critical gap in the literature is the lack of a comprehensive overview of rece...The physical-mechanical,chemical,and durability characteristics of alkali-activated materials(AAMs)have been widely investigated.However,a critical gap in the literature is the lack of a comprehensive overview of recently published literature regarding the life cycle assessment(LCA)of these binders.This study aims to fill that gap by conducting a systematic literature review of globally published literature on the topic.This paper consolidates knowledge by searching different databases,focusing on LCA studies that used AAMs as pastes,mortars,concretes,bricks,and rammed earth/soil blocks.The selected articles were reviewed and categorized based on precursors,alkaline activators,functional units,system boundaries,life cycle inventory databases,allocation,impact methodologies,and software used.Additionally,this paper also critically analyzes the key challenges of LCA for AAMs.The major challenges were identified as selecting a functional unit,subjectivity in boundary systems,and data interpretation.This work concludes that AAMs show substantial advantages in global warming potential compared to ordinary Portland cement-based materials;however,the average of other categories such as marine ecotoxicity and ozone layer depletion has been reported to be higher than for the reference samples.展开更多
In nature, a few living organisms such as diatoms, magnetotactic bacteria, and eggs have developed specific mineral structures, which can provide extensive protection or unique functions. However, most organisms do no...In nature, a few living organisms such as diatoms, magnetotactic bacteria, and eggs have developed specific mineral structures, which can provide extensive protection or unique functions. However, most organisms do not have such structured materials due to their lack of biomineralization ability. The artificial introduction of biomimetic-constructed nanominerals is challenging but holds great promise. In this overview, we highlight two typical types of mineral- living complex systems. One involves biological surface-induced nanomaterials, which produces artificial living-mineral core-shell structures such as the mineral- encapsulated yeast, cyanobacteria, bacteria and viruses. The other involves internal nanominerals that could endow organisms with unique structures and properties. The applications of these biomimetic generated nanominerals are further discussed, mainly in four potential areas: storage, protection, "stealth" and delivery. Since biomineralization combines chemical, nano and biological technologies, we suggest that nanobiomimetic mineralization may open up another window for interdisciplinary research. Specifically, this is a novel material-based biological regulation strategy and the integration of living organisms with functional nanomaterials can create "super" or intelligent nanoscale living complexes for biotechnological practices.展开更多
The forecast of growing air transport in the upcoming decades faces the challenge of an increasing environmental impact.Aviation industry is working on promising technologies to mitigate this environmental impact.Ligh...The forecast of growing air transport in the upcoming decades faces the challenge of an increasing environmental impact.Aviation industry is working on promising technologies to mitigate this environmental impact.Lightweight design is a strong lever to lower the fuel consumption and,consequently,with it the emissions of aviation.High performance composites are a key technology to help achieve these aims thanks to their favourable combination of mechanical properties and low weight in primary structures.However,mainly synthetic materials such as petrol based carbon fibres and epoxy resins are used nowadays to produce composite in aviation.Renewable materials like bio-based fibres and resin systems offer potential environmental advantages.However,they have not found their way into aviation,yet.The reasons are reduced mechanical properties and,especially for the use of natural fibres,their flammability.Improvements of these shortcomings are under investigation.Therefore the application of bio-based and recycled materials in certain areas of the aircraft could be possible in the future.Good examples for applications are furnishings and secondary structures.The motivation for this paper is to give an overview of potential environmental properties by using such eco-materials in aviation.Life cycle assessment(LCA) is a tool to calculate environmental impacts during all life stages of a product.The main focus is laid on the bio-fibres flax and ramie,recycled carbon fibres and bio-based thermoset resin systems.Furthermore an overview of environmental aspects of existing composite materials used in aviation is given.Generally,a lack of LCA results for the substitution of synthetic materials by bio-based/recycled composite materials in aviation applications has been identified.Therefore,available information from other transport areas,such as automotive,has been summarized.More detailed LCA data for eco-composite materials and technologies to improve their properties is important to understand potential environmental effects in aviation.展开更多
The confinements of water can be divided into two main categories,namely,the confinements on surface or interface and the confinements in bulk water.By adding ions or applying electric field,the intensity and distribu...The confinements of water can be divided into two main categories,namely,the confinements on surface or interface and the confinements in bulk water.By adding ions or applying electric field,the intensity and distribution of the hydrogen bonds can be greatly affected.These are collectively known as confinement on water surface or interface,which has potential applications in life science and industries involving evaporation control.Confined bulk water could be found everywhere in nature,such as in granular and porous materials,macromolecules and gels,etc.The investigation of the physical properties and the transports of the confined bulk water will contribute to understanding certain types of life activities such as the water transport in plant and in new application of extracting the shale oil and water.展开更多
文摘The unity between physics and biology refers to that the inorganic systems: the Solar System, galaxies and artificial systems have the same structures and functions as the organisms. The development of science and technology is demonstrating the intense unification trends of physics and biology and a holistic science and technology era is about to start. The physics and biology unify on the basis of the four seasons' law, which is the most important rule of the universe. Life is defined as the four seasons' whole with the structure and process of four seasons. The organism is basically structured into a dual four-season body by state-varying, state-stabilizing and control organizations. Animals, the Solar System and the earth are all the dual four-season bodies. In the unity between physics and biology, the inorganic life materials and inorganic life body can be manufactured artificially.
文摘Olivine-type LiFePO4/C composite cathode materials were synthesized by a solid-state reaction method in an inert atmosphere. The glucose was added as conductive precursors before the formation of the crystalline phase. The effects of glucose content on the properties of as-synthesized cathode materials were investigated. The crystal structure and the electrochemical performance were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), laser particle-size distribution measurement and electrochemical performance testing. The material has a single crystal olivine structure with grain-sizes ca. 100-200 nm. SEM micrographs and the corresponding energy dispersive spectrometer (EDS) data confirm that the carbon particulates produced by glucose pyrogenation are uniformly dispersed among the LiFePO4 grains, ensuring a good electronic contact. Impedance spectroscopy was used to investigate the ohmic and kinetic contributions to the cell performance. It is found that increasing the carbon content leads to a reduction of the cell impedance due to the reduction of the charge transfer resistance. The galvanostatically charge and discharge tests show that the material obtained by adding 10% C (by mass) gives a maximum discharge capacity of 140.8mA·h·g^-1 at the same rate (C/10). The material also displays a more stable cycle-life than the others.
文摘The contemporary demand for reducing carbon emission is changing the way architects design buildings, thus influencing a wide range of new solutions. In this paper, the author presents a method that intends to contribute for the discussion of recent strategies that lower the buildings' consumption of energy. The study establishes three priority parameters to analyze the faqades based on the materials, the practices and the thermal behavior. Each parameter is measured separately scaled from artificial to natural building materials, local to distant practices and insulation to inertia. The design of facades has been evolving to follow complex regulations that aim to increase the required sustainable performance of buildings. Scientific data is measurable individually by each parameter, though the cross influence between parameters raise the level of complexity. Shading systems, solar passive energy influence the measurement but the growing use of renewable energies affects the measurements of energy consumption. Each design responds differently to climatic conditions, and requires complex analyses considering the specificity of the natural environment and cultural context. The discussion makes use of scientific data that influences architectural design, the research requires a broader perception thus including cultural aspects. Recent high tech insulating systems have an effect on design solutions that characterize biophilia (human love of nature). The wisdom of traditional local solutions tested over generations holds cultural aspects of biomimicry (nature as model). The aim is to discuss whether the framework based on biophilia and biomimicry is useful for the research.
文摘The paper analyze and comprehensive evaluate on the characteristics of the product life cycle in each link of the green product design and the life cycle, has obtained a series of design green design optimization method. In the choice of materials, this paper presented a method for the re-combination of recycled materials. In the recovery of the product it proposes the establishment of recycling system, and expounds the concept upgrade recovery. Design and manufacturing of green products and green recycling industry is the two most important link in green circular economic system, whether or not the coordinated development of the two sectors, is the key to the success or failure of the strategy of sustainable development.
基金supported by the Alexander von Humboldt Foundation,International Climate Protection Fellowship(Ref 3.5—1157991-IRN-IKS)This financial support is gratefully appreciated by Morteza Nikravan.Rafia Firdous and Dietmar Stephan highly acknowledge Bundesministerium fur Wirtschaft und Energie(BMWi)for funding number 16KN046744.
文摘The physical-mechanical,chemical,and durability characteristics of alkali-activated materials(AAMs)have been widely investigated.However,a critical gap in the literature is the lack of a comprehensive overview of recently published literature regarding the life cycle assessment(LCA)of these binders.This study aims to fill that gap by conducting a systematic literature review of globally published literature on the topic.This paper consolidates knowledge by searching different databases,focusing on LCA studies that used AAMs as pastes,mortars,concretes,bricks,and rammed earth/soil blocks.The selected articles were reviewed and categorized based on precursors,alkaline activators,functional units,system boundaries,life cycle inventory databases,allocation,impact methodologies,and software used.Additionally,this paper also critically analyzes the key challenges of LCA for AAMs.The major challenges were identified as selecting a functional unit,subjectivity in boundary systems,and data interpretation.This work concludes that AAMs show substantial advantages in global warming potential compared to ordinary Portland cement-based materials;however,the average of other categories such as marine ecotoxicity and ozone layer depletion has been reported to be higher than for the reference samples.
基金The authors greatly thank Xiaoyu Wang, Ben Wang and Wei Xiong for providing editable graphic materials. This study was supported by the Fundamental Research Funds for the Central Universities of China and the Natural Science Foundation of China (No. 91127003).
文摘In nature, a few living organisms such as diatoms, magnetotactic bacteria, and eggs have developed specific mineral structures, which can provide extensive protection or unique functions. However, most organisms do not have such structured materials due to their lack of biomineralization ability. The artificial introduction of biomimetic-constructed nanominerals is challenging but holds great promise. In this overview, we highlight two typical types of mineral- living complex systems. One involves biological surface-induced nanomaterials, which produces artificial living-mineral core-shell structures such as the mineral- encapsulated yeast, cyanobacteria, bacteria and viruses. The other involves internal nanominerals that could endow organisms with unique structures and properties. The applications of these biomimetic generated nanominerals are further discussed, mainly in four potential areas: storage, protection, "stealth" and delivery. Since biomineralization combines chemical, nano and biological technologies, we suggest that nanobiomimetic mineralization may open up another window for interdisciplinary research. Specifically, this is a novel material-based biological regulation strategy and the integration of living organisms with functional nanomaterials can create "super" or intelligent nanoscale living complexes for biotechnological practices.
基金supported by the European Union's Horizon 2020 research and innovation programme(Grant No.690638)the Ministry for Industry and Information of the People's Republic of China(Grant No.[2016]92)
文摘The forecast of growing air transport in the upcoming decades faces the challenge of an increasing environmental impact.Aviation industry is working on promising technologies to mitigate this environmental impact.Lightweight design is a strong lever to lower the fuel consumption and,consequently,with it the emissions of aviation.High performance composites are a key technology to help achieve these aims thanks to their favourable combination of mechanical properties and low weight in primary structures.However,mainly synthetic materials such as petrol based carbon fibres and epoxy resins are used nowadays to produce composite in aviation.Renewable materials like bio-based fibres and resin systems offer potential environmental advantages.However,they have not found their way into aviation,yet.The reasons are reduced mechanical properties and,especially for the use of natural fibres,their flammability.Improvements of these shortcomings are under investigation.Therefore the application of bio-based and recycled materials in certain areas of the aircraft could be possible in the future.Good examples for applications are furnishings and secondary structures.The motivation for this paper is to give an overview of potential environmental properties by using such eco-materials in aviation.Life cycle assessment(LCA) is a tool to calculate environmental impacts during all life stages of a product.The main focus is laid on the bio-fibres flax and ramie,recycled carbon fibres and bio-based thermoset resin systems.Furthermore an overview of environmental aspects of existing composite materials used in aviation is given.Generally,a lack of LCA results for the substitution of synthetic materials by bio-based/recycled composite materials in aviation applications has been identified.Therefore,available information from other transport areas,such as automotive,has been summarized.More detailed LCA data for eco-composite materials and technologies to improve their properties is important to understand potential environmental effects in aviation.
基金supported by the National Natural Science Foundation of China(Grant No.11290165)
文摘The confinements of water can be divided into two main categories,namely,the confinements on surface or interface and the confinements in bulk water.By adding ions or applying electric field,the intensity and distribution of the hydrogen bonds can be greatly affected.These are collectively known as confinement on water surface or interface,which has potential applications in life science and industries involving evaporation control.Confined bulk water could be found everywhere in nature,such as in granular and porous materials,macromolecules and gels,etc.The investigation of the physical properties and the transports of the confined bulk water will contribute to understanding certain types of life activities such as the water transport in plant and in new application of extracting the shale oil and water.