为了保护带电作业人员的安全,计算分析了≥750 k V交流电压等级线路和±660 k V、±800 k V直流线路电位转移过程中的暂态能量,并开展了导电手套放电试验研究。理论和试验研究结果表明,当放电系统能量为1.37 J时,放电电弧的根...为了保护带电作业人员的安全,计算分析了≥750 k V交流电压等级线路和±660 k V、±800 k V直流线路电位转移过程中的暂态能量,并开展了导电手套放电试验研究。理论和试验研究结果表明,当放电系统能量为1.37 J时,放电电弧的根部直接作用在导电手套上,将导电手套烧蚀,对作业人员产生伤害。考虑实际作业安全裕度,在规定的电位转移距离下,≥750 k V交流线路和±660 k V、±800 k V直流线路电位转移的暂态能量>1.0 J时,需使用电位转移棒进行电位转移,确保电位转移人员的安全。展开更多
超特高压输电线路等电位带电作业电位转移过程会出现明显间歇性电弧放电(电位转移电弧)现象,电弧产生的电磁辐射可能会影响周围智能设备的正常稳定工作,因此,研究电位转移电弧的电磁辐射特性具有重要意义。基于1000 k V交流输电线路耐...超特高压输电线路等电位带电作业电位转移过程会出现明显间歇性电弧放电(电位转移电弧)现象,电弧产生的电磁辐射可能会影响周围智能设备的正常稳定工作,因此,研究电位转移电弧的电磁辐射特性具有重要意义。基于1000 k V交流输电线路耐张塔带电作业电位转移电流实测波形,利用希尔伯特变换对其进行频谱分析,获得了电位转移电流的频带分布,根据天线理论建立了带电作业电位转移电弧电磁辐射特性仿真模型,对转移电弧的辐射电磁场进行了计算,获得了转移电弧的辐射电磁场分布规律。结果表明:电位转移电弧电流呈高频振荡,其峰值可达1000 A左右,主要频率分布为13~20 MHz;转移电弧产生的辐射电场强度峰值远大于磁场强度,两者均随距离的增大快速衰减,且在金属导体附近分布较为集中;当频率为16.5MHz时,杆塔附近的电场和磁场强度最大值分别为1.5 k V/m和1.9 A/m左右。展开更多
进入等电位极导线是开展±800 kV特高压直流输电线路带电作业的关键环节,优化带电作业人员进出等电位的路径对确保人员的安全具有重要意义。本研究基于电位转移电流及其电弧能量的计算优化进出等电位路径,搭建了电弧能量计算模型,...进入等电位极导线是开展±800 kV特高压直流输电线路带电作业的关键环节,优化带电作业人员进出等电位的路径对确保人员的安全具有重要意义。本研究基于电位转移电流及其电弧能量的计算优化进出等电位路径,搭建了电弧能量计算模型,利用有限元(FEM)计算了3种进入导线方式下的人体电位、不同转移距离、悬浮电位人体-极导线的局部电容,分析了不同进出方式下与电位转移电流大小及电弧能量之间的关系。结果表明:从下方进入导线时人体电位最低,此时进行电位转移时的电弧能量在3种进入方式中最大;从上方进入导线时人体电位最高,其电位转移电弧能量最小。该计算方法和结果可供±800 k V直流输电线路带电作业进入路径选取和安全防护用具设计时参考。展开更多
文摘为了保护带电作业人员的安全,计算分析了≥750 k V交流电压等级线路和±660 k V、±800 k V直流线路电位转移过程中的暂态能量,并开展了导电手套放电试验研究。理论和试验研究结果表明,当放电系统能量为1.37 J时,放电电弧的根部直接作用在导电手套上,将导电手套烧蚀,对作业人员产生伤害。考虑实际作业安全裕度,在规定的电位转移距离下,≥750 k V交流线路和±660 k V、±800 k V直流线路电位转移的暂态能量>1.0 J时,需使用电位转移棒进行电位转移,确保电位转移人员的安全。
文摘超特高压输电线路等电位带电作业电位转移过程会出现明显间歇性电弧放电(电位转移电弧)现象,电弧产生的电磁辐射可能会影响周围智能设备的正常稳定工作,因此,研究电位转移电弧的电磁辐射特性具有重要意义。基于1000 k V交流输电线路耐张塔带电作业电位转移电流实测波形,利用希尔伯特变换对其进行频谱分析,获得了电位转移电流的频带分布,根据天线理论建立了带电作业电位转移电弧电磁辐射特性仿真模型,对转移电弧的辐射电磁场进行了计算,获得了转移电弧的辐射电磁场分布规律。结果表明:电位转移电弧电流呈高频振荡,其峰值可达1000 A左右,主要频率分布为13~20 MHz;转移电弧产生的辐射电场强度峰值远大于磁场强度,两者均随距离的增大快速衰减,且在金属导体附近分布较为集中;当频率为16.5MHz时,杆塔附近的电场和磁场强度最大值分别为1.5 k V/m和1.9 A/m左右。
文摘进入等电位极导线是开展±800 kV特高压直流输电线路带电作业的关键环节,优化带电作业人员进出等电位的路径对确保人员的安全具有重要意义。本研究基于电位转移电流及其电弧能量的计算优化进出等电位路径,搭建了电弧能量计算模型,利用有限元(FEM)计算了3种进入导线方式下的人体电位、不同转移距离、悬浮电位人体-极导线的局部电容,分析了不同进出方式下与电位转移电流大小及电弧能量之间的关系。结果表明:从下方进入导线时人体电位最低,此时进行电位转移时的电弧能量在3种进入方式中最大;从上方进入导线时人体电位最高,其电位转移电弧能量最小。该计算方法和结果可供±800 k V直流输电线路带电作业进入路径选取和安全防护用具设计时参考。