针对硬碳材料在钠离子电池中循环、倍率性能不佳的问题,提出石墨烯包覆改性的策略。实验结果表明石墨烯的存在引入了更加丰富的孔道结构,有效地改善硬碳材料的导电性,提升电子传导效率。电化学表征结果显示石墨烯/硬碳复合材料(HCG)表...针对硬碳材料在钠离子电池中循环、倍率性能不佳的问题,提出石墨烯包覆改性的策略。实验结果表明石墨烯的存在引入了更加丰富的孔道结构,有效地改善硬碳材料的导电性,提升电子传导效率。电化学表征结果显示石墨烯/硬碳复合材料(HCG)表现出优异的倍率以及循环稳定性:在2 A g^(-1)的电流密度下分别循环2000次其容量保持率分别为83.8%和24.2%。展开更多
Organic light emitting diodes (OLEDs) incorporating an n-doping transport layer comprised of 8-hydroxy-quin- olinato lithium (Liq) doped into 4' 7- diphyenyl-1,10-phenanthroline (BPhen) as ETL and a p-doping tr...Organic light emitting diodes (OLEDs) incorporating an n-doping transport layer comprised of 8-hydroxy-quin- olinato lithium (Liq) doped into 4' 7- diphyenyl-1,10-phenanthroline (BPhen) as ETL and a p-doping transport layer that includes tetrafluro-tetracyano-quinodimethane (F4- TCNQ) doped into 4,4′, 4″-tris (3-methylphenylphenylamono) triphe- nylamine (m-MTDATA) are demonstrated. In order to examine the improvement in the conductivity of transport layers, hole-only and electron-only devices are fabricated. The current and power efficiency Of organic light-emitting diodes are improved significantly after introducing an n-doping (BPhen:33wt% Liq) layer as an electron transport layer (ETL) and a p-doping layer composed of m-MTDATA and F4- TCNQ as a hole transport layer (HTL). Compared with the control device (without doping) , the current efficiency and power efficiency of the most efficient device (device C) are enhanced by approximately 51% and 89% ,respectively, while driving voltage is reduced by 29%. This improvement is attributed to the improved conductivity of the transport layers that leads to efficient charge balance in the emission zone.展开更多
文摘针对硬碳材料在钠离子电池中循环、倍率性能不佳的问题,提出石墨烯包覆改性的策略。实验结果表明石墨烯的存在引入了更加丰富的孔道结构,有效地改善硬碳材料的导电性,提升电子传导效率。电化学表征结果显示石墨烯/硬碳复合材料(HCG)表现出优异的倍率以及循环稳定性:在2 A g^(-1)的电流密度下分别循环2000次其容量保持率分别为83.8%和24.2%。
文摘Organic light emitting diodes (OLEDs) incorporating an n-doping transport layer comprised of 8-hydroxy-quin- olinato lithium (Liq) doped into 4' 7- diphyenyl-1,10-phenanthroline (BPhen) as ETL and a p-doping transport layer that includes tetrafluro-tetracyano-quinodimethane (F4- TCNQ) doped into 4,4′, 4″-tris (3-methylphenylphenylamono) triphe- nylamine (m-MTDATA) are demonstrated. In order to examine the improvement in the conductivity of transport layers, hole-only and electron-only devices are fabricated. The current and power efficiency Of organic light-emitting diodes are improved significantly after introducing an n-doping (BPhen:33wt% Liq) layer as an electron transport layer (ETL) and a p-doping layer composed of m-MTDATA and F4- TCNQ as a hole transport layer (HTL). Compared with the control device (without doping) , the current efficiency and power efficiency of the most efficient device (device C) are enhanced by approximately 51% and 89% ,respectively, while driving voltage is reduced by 29%. This improvement is attributed to the improved conductivity of the transport layers that leads to efficient charge balance in the emission zone.