The electronic packaging box with high silicon aluminum-base alloy was prepared by semi-solid thixoforming technique.The flow characteristic of the Si phase was analyzed.The microstructures of different parts of the b...The electronic packaging box with high silicon aluminum-base alloy was prepared by semi-solid thixoforming technique.The flow characteristic of the Si phase was analyzed.The microstructures of different parts of the box were observed by optical microscopy and scanning electron microscopy,and the thermophysical and mechanical properties of the box were tested.The results show that there exists the segregation phenomenon between the primary Si phase and the liquid phase during thixoforming,the liquid phase flows from the box,and the primary Si phase accumulates at the bottom of the box.The volume fraction of primary Si phase decreases gradually from the bottom to the walls.Accordingly,the thermal conductivities of bottom center and walls are 107.6 and 131.5 W/(m·K),the coefficients of thermal expansion(CTE) are 7.9×10-6 and 10.6×10-6 K-1,respectively.The flexural strength increases slightly from 167 to 180 MPa.The microstructures and properties of the box show gradient distribution overall.展开更多
The multi-configuration Dirac-Fock method is used in this work to calculate ground-state ionization potentials of Boron and Carbon isoelectronic sequences from Z = 6 to Z=42. And the contribution of relativistic corre...The multi-configuration Dirac-Fock method is used in this work to calculate ground-state ionization potentials of Boron and Carbon isoelectronic sequences from Z = 6 to Z=42. And the contribution of relativistic corrections, nuclear volume effect, Breit and QED effects to tile results is discussed in the calculation. The results are compared with the scanty existing theoretical and experimental data in the literature and good agreements are achieved. Then analytical expressions of lonization potential along Boron and Carbon isoelectronic sequences are obtained.展开更多
The vibration states of transition molecule S<SUB>2</SUB>O, including both bending and stretching vibrations, are studied in the framework of dynamical symmetry groups . We get all the vibration spectra of...The vibration states of transition molecule S<SUB>2</SUB>O, including both bending and stretching vibrations, are studied in the framework of dynamical symmetry groups . We get all the vibration spectra of S<SUB>2</SUB>O by fitting 22 spectra data with 10 parameters. The fitting rms of the Hamiltonian is 2.12 cm<SUP>-1</SUP>. With the parameters and Lie algebraic theory, we give the analytical expression of the potential energy surface, which helps us to calculate the dissociation energy and force constants of S<SUB>2</SUB>O in the electronic ground state.展开更多
In this paper, we study four electrons confined in a parabolic quantum dot in the absence of magnetic field, by the exact diagonalization method. The ground-state electronic structures and orbital and spin angular mom...In this paper, we study four electrons confined in a parabolic quantum dot in the absence of magnetic field, by the exact diagonalization method. The ground-state electronic structures and orbital and spin angular momenta transitions as a function of the confined strength are investigated. We find that the confinement may cause accidental degeneracies between levels with different low-lying states and the inversion of the energy values. The present results are useful to understand the optical properties and internal electron-electron correlations of quantum dot materials.展开更多
文摘The electronic packaging box with high silicon aluminum-base alloy was prepared by semi-solid thixoforming technique.The flow characteristic of the Si phase was analyzed.The microstructures of different parts of the box were observed by optical microscopy and scanning electron microscopy,and the thermophysical and mechanical properties of the box were tested.The results show that there exists the segregation phenomenon between the primary Si phase and the liquid phase during thixoforming,the liquid phase flows from the box,and the primary Si phase accumulates at the bottom of the box.The volume fraction of primary Si phase decreases gradually from the bottom to the walls.Accordingly,the thermal conductivities of bottom center and walls are 107.6 and 131.5 W/(m·K),the coefficients of thermal expansion(CTE) are 7.9×10-6 and 10.6×10-6 K-1,respectively.The flexural strength increases slightly from 167 to 180 MPa.The microstructures and properties of the box show gradient distribution overall.
基金Supported by the Science Fund for Young Scholars of Southwest University under Grant No.SWU208035 Fundamental Research Funds of Central University under Grant No.XDJK2009C020
文摘The multi-configuration Dirac-Fock method is used in this work to calculate ground-state ionization potentials of Boron and Carbon isoelectronic sequences from Z = 6 to Z=42. And the contribution of relativistic corrections, nuclear volume effect, Breit and QED effects to tile results is discussed in the calculation. The results are compared with the scanty existing theoretical and experimental data in the literature and good agreements are achieved. Then analytical expressions of lonization potential along Boron and Carbon isoelectronic sequences are obtained.
基金The project supported by National Natural Science Foundation of China and partly by the Science Foundation of Shandong Province of China
文摘The vibration states of transition molecule S<SUB>2</SUB>O, including both bending and stretching vibrations, are studied in the framework of dynamical symmetry groups . We get all the vibration spectra of S<SUB>2</SUB>O by fitting 22 spectra data with 10 parameters. The fitting rms of the Hamiltonian is 2.12 cm<SUP>-1</SUP>. With the parameters and Lie algebraic theory, we give the analytical expression of the potential energy surface, which helps us to calculate the dissociation energy and force constants of S<SUB>2</SUB>O in the electronic ground state.
基金supported by National Natural Science Foundation of China under Grant No.10775035
文摘In this paper, we study four electrons confined in a parabolic quantum dot in the absence of magnetic field, by the exact diagonalization method. The ground-state electronic structures and orbital and spin angular momenta transitions as a function of the confined strength are investigated. We find that the confinement may cause accidental degeneracies between levels with different low-lying states and the inversion of the energy values. The present results are useful to understand the optical properties and internal electron-electron correlations of quantum dot materials.