A two-dimensional mathematical model based on volume-of-fluid method is proposed to investigate the heat transfer,fluidflow and keyhole dynamics during electron beam welding(EBW)on20mm-thick2219aluminum alloy plate.In...A two-dimensional mathematical model based on volume-of-fluid method is proposed to investigate the heat transfer,fluidflow and keyhole dynamics during electron beam welding(EBW)on20mm-thick2219aluminum alloy plate.In the model,anadaptive heat source model tracking keyhole depth is employed to simulate the heating process of electron beam.Heat and masstransport of different vortexes induced by surface tension,thermo-capillary force,recoil pressure,hydrostatic pressure and thermalbuoyancy is coupled with keyhole evolution.A series of physical phenomena involving keyhole drilling,collapse,reopening,quasi-stability,backfilling and the coupled thermal field are analyzed systematically.The results indicate that the decreased heat fluxof beam in depth can decelerate the keyholing velocity of recoil pressure and promote the quasi-steady state.Before and close to thisstate,the keyhole collapses and complicates the fluid transport of vortexes.Finally,all simulation results are validated againstexperiments.展开更多
Because short pulse Nd:YAG laser of nanosecond pulse-width and high peak power has a unique capability to improve the mechanical properties of metal parts,a study on the development of high peak power short pulse from...Because short pulse Nd:YAG laser of nanosecond pulse-width and high peak power has a unique capability to improve the mechanical properties of metal parts,a study on the development of high peak power short pulse from Nd:YAG laser along with its peening application has been performed.The design scheme of laser and the characteristic of laser beam transmission are presented and discussed.A pulse energy of 25 J with 15 ns pulse-width and a maximum peak power of 1660 k W laser system which use one oscillation and eight amplifiers has been achieved.Laser beam has a max divergence angle of 0.03 mrad,a pulse-to-pulse pulse-width stability of±0.1 ns,and the pulse-to-pulse energy stability factors of less than±2.8%.A low value of divergence means an easier modification of a nearly hat-top laser beam intensity profile and an easier transmission of laser beam.To evaluate the performance of the laser system,several metal materials are processed.Laser peening quality and efficiency are analyzed by using an optical microscope,a transmission electron microscope,and an X-ray diffraction device.The processing results show that the performance of this laser system is excellent.展开更多
文摘A two-dimensional mathematical model based on volume-of-fluid method is proposed to investigate the heat transfer,fluidflow and keyhole dynamics during electron beam welding(EBW)on20mm-thick2219aluminum alloy plate.In the model,anadaptive heat source model tracking keyhole depth is employed to simulate the heating process of electron beam.Heat and masstransport of different vortexes induced by surface tension,thermo-capillary force,recoil pressure,hydrostatic pressure and thermalbuoyancy is coupled with keyhole evolution.A series of physical phenomena involving keyhole drilling,collapse,reopening,quasi-stability,backfilling and the coupled thermal field are analyzed systematically.The results indicate that the decreased heat fluxof beam in depth can decelerate the keyholing velocity of recoil pressure and promote the quasi-steady state.Before and close to thisstate,the keyhole collapses and complicates the fluid transport of vortexes.Finally,all simulation results are validated againstexperiments.
基金supported by the National Hi-Tech Research and Development Program of China("863"Project)(Grant No.2012AA041310)
文摘Because short pulse Nd:YAG laser of nanosecond pulse-width and high peak power has a unique capability to improve the mechanical properties of metal parts,a study on the development of high peak power short pulse from Nd:YAG laser along with its peening application has been performed.The design scheme of laser and the characteristic of laser beam transmission are presented and discussed.A pulse energy of 25 J with 15 ns pulse-width and a maximum peak power of 1660 k W laser system which use one oscillation and eight amplifiers has been achieved.Laser beam has a max divergence angle of 0.03 mrad,a pulse-to-pulse pulse-width stability of±0.1 ns,and the pulse-to-pulse energy stability factors of less than±2.8%.A low value of divergence means an easier modification of a nearly hat-top laser beam intensity profile and an easier transmission of laser beam.To evaluate the performance of the laser system,several metal materials are processed.Laser peening quality and efficiency are analyzed by using an optical microscope,a transmission electron microscope,and an X-ray diffraction device.The processing results show that the performance of this laser system is excellent.