A series of alkali metal salts doped pluronic block copolymer F127 were used as electron injection/transport layers (ETLs) for polymer light-emitting diodes with poly[2-(4-(3′,7′-dimethyloctyloxy)-phenyl)-p-phenylen...A series of alkali metal salts doped pluronic block copolymer F127 were used as electron injection/transport layers (ETLs) for polymer light-emitting diodes with poly[2-(4-(3′,7′-dimethyloctyloxy)-phenyl)-p-phenylenevinylene] (P-PPV) as the emission layer. It was found that the electron transport capability of F127 can be effectively enhanced by doping with alkali metal salts. By using Li2CO3 (15%) doped F127 as ETL, the resulting device exhibited improved performance with a maximum luminous efficiency (LE) of 13.59 cd/A and a maximum brightness of 5529 cd/m2, while the device with undoped F127 as ETL only showed a maximum LE of 8.78 cd/A and a maximum brightness of 2952 cd/m2. The effects of the doping concentration, cations and anions of the alkali metal salts on the performance of the resulting devices were investigated. It was found that most of the alkali metal salt dopants can dramatically enhance the electron transport capability of F127 ETL and the performance of the resulting devices was greatly improved.展开更多
Metal halide perovskite light emitting diodes(PeLEDs)have recently experienced rapid development due to the tunable emission wavelengths,narrow emission linewidth and low material cost.To achieve stateof-the-art perfo...Metal halide perovskite light emitting diodes(PeLEDs)have recently experienced rapid development due to the tunable emission wavelengths,narrow emission linewidth and low material cost.To achieve stateof-the-art performance,the high photoluminescence quantum yield(PLQY)of the active emission layer,the balanced charge injection,and the optimized optical extraction should be considered simultaneously.Multiple chemical passivation strategies have been provided as controllable and efficient methods to improve the PLQY of the perovskite layer.However,high luminance under large injection current and high external quantum efficiency(EQE)can hardly be achieved due to Auger recombination at high carrier density.Here,we decreased the electron injection barrier by tuning the Fermi-level of the perovskite,leading to a reduced turn on voltage.Through molecular doping of the hole injection material,a more balanced hole injection was achieved.At last,a device with modified charge injection realizes high luminance and quantum efficiency simultaneously.The best device exhibits luminance of 55,000 cd m^-2 EQE of 8.02%at the working voltage of 2.65 V,current density of 115 mA cm^-2,and shows EQE T50 stability around 160 min at 100 mA cm^-2 injection current density.展开更多
In this paper, we report the fabrication, electrical and physical characteristics of TiN/HfO2/Si MOS capacitors with erbium (Er) ion implantation. It is demonstrated that the fiat band voltage can be reduced by 0.4 ...In this paper, we report the fabrication, electrical and physical characteristics of TiN/HfO2/Si MOS capacitors with erbium (Er) ion implantation. It is demonstrated that the fiat band voltage can be reduced by 0.4 V due to the formation of Er oxide. Moreover, it is observed that the equivalent oxide thickness is thinned down by 0.5 nm because the thickness of interfacial layer is significantly reduced, which is thought to be attributed to the strong binding capability of the implanted Er atoms with oxygen atoms. In addition, cross-sectional transmission electron microscopy experiment shows that the HfO2 layer with Er ion implantation is still amorphous after annealing at a high temperature. This Er ion implantation technique has the potential to be implemented as a band edge metal gate solution for NMOS without a capping layer, and may also satisfy the demand of the EOT reduction in 32 nm technology node.展开更多
基金Patent Industrialization Project of Shaanxi Province(No.2005ZZ-04)Industrialization Project of Shaanxi Education Office(No.06JC23)Patent Scientific Research Project of Shaanxi Education Office(No.07JK191)
基金supported by the National Natural Science Foundation of China (21125419, 50990065, 51010003, 51073058, and 20904011)National Research Project (2009CB623601 and 2009CB930604)
文摘A series of alkali metal salts doped pluronic block copolymer F127 were used as electron injection/transport layers (ETLs) for polymer light-emitting diodes with poly[2-(4-(3′,7′-dimethyloctyloxy)-phenyl)-p-phenylenevinylene] (P-PPV) as the emission layer. It was found that the electron transport capability of F127 can be effectively enhanced by doping with alkali metal salts. By using Li2CO3 (15%) doped F127 as ETL, the resulting device exhibited improved performance with a maximum luminous efficiency (LE) of 13.59 cd/A and a maximum brightness of 5529 cd/m2, while the device with undoped F127 as ETL only showed a maximum LE of 8.78 cd/A and a maximum brightness of 2952 cd/m2. The effects of the doping concentration, cations and anions of the alkali metal salts on the performance of the resulting devices were investigated. It was found that most of the alkali metal salt dopants can dramatically enhance the electron transport capability of F127 ETL and the performance of the resulting devices was greatly improved.
基金in part supported by Research Grants Council of Hong Kong,particularly,via Grant Nos.Ao E/P-03/08,T23-407/13-N,Ao E/P-02/12,14207515,14204616CUHK Group Research Scheme,and ITS/088/17 by Innovation and Technology Commission,Hong Kong SAR Governmentthe National Natural Science Foundation of China for the support,particularly,via Grant No.61229401。
文摘Metal halide perovskite light emitting diodes(PeLEDs)have recently experienced rapid development due to the tunable emission wavelengths,narrow emission linewidth and low material cost.To achieve stateof-the-art performance,the high photoluminescence quantum yield(PLQY)of the active emission layer,the balanced charge injection,and the optimized optical extraction should be considered simultaneously.Multiple chemical passivation strategies have been provided as controllable and efficient methods to improve the PLQY of the perovskite layer.However,high luminance under large injection current and high external quantum efficiency(EQE)can hardly be achieved due to Auger recombination at high carrier density.Here,we decreased the electron injection barrier by tuning the Fermi-level of the perovskite,leading to a reduced turn on voltage.Through molecular doping of the hole injection material,a more balanced hole injection was achieved.At last,a device with modified charge injection realizes high luminance and quantum efficiency simultaneously.The best device exhibits luminance of 55,000 cd m^-2 EQE of 8.02%at the working voltage of 2.65 V,current density of 115 mA cm^-2,and shows EQE T50 stability around 160 min at 100 mA cm^-2 injection current density.
基金supported by the State Key Development Program for Basic Research of China(Grant No. 2011CBA00602)the National Natural Science Foundation of China(Grant Nos. 60876076 and 60976013)
文摘In this paper, we report the fabrication, electrical and physical characteristics of TiN/HfO2/Si MOS capacitors with erbium (Er) ion implantation. It is demonstrated that the fiat band voltage can be reduced by 0.4 V due to the formation of Er oxide. Moreover, it is observed that the equivalent oxide thickness is thinned down by 0.5 nm because the thickness of interfacial layer is significantly reduced, which is thought to be attributed to the strong binding capability of the implanted Er atoms with oxygen atoms. In addition, cross-sectional transmission electron microscopy experiment shows that the HfO2 layer with Er ion implantation is still amorphous after annealing at a high temperature. This Er ion implantation technique has the potential to be implemented as a band edge metal gate solution for NMOS without a capping layer, and may also satisfy the demand of the EOT reduction in 32 nm technology node.