ZnO nanobelts, hollow microspheres, and urchins have been prepared on copper foil via a simply low temperature evaporation route. The microstructure, morphologies, and photolu-minescence of the ZnO nanostructures were...ZnO nanobelts, hollow microspheres, and urchins have been prepared on copper foil via a simply low temperature evaporation route. The microstructure, morphologies, and photolu-minescence of the ZnO nanostructures were studied with X-ray diffraction, Raman spectra, scanning electron microscopy and photoluminescence spectra. The width of the nanobelts was about 500 nm and the length was longer than 10μm. The diameter of the hollow microspheres was between 5 and 10μm. A possible growth mechanism of the nanobelts, microspheres and urchins was proposed. The photoluminescence spectrum exhibited strong deep level energy emissions and a weak near band edge emission. These ZnO nanostructures on a copper substrate have the advantages of naturally good adhesion and electrical connection between the ZnO nanostructures and the conductive substrate.展开更多
基金ACKNOWLEDGMENTS This work was supported by the Natural Science Foundation of Fujian Province of China (No.2007J0317 and No.JB06104) and the Key project of Fujian Provincial Department of Science and Technology (No.2007H0019).
文摘ZnO nanobelts, hollow microspheres, and urchins have been prepared on copper foil via a simply low temperature evaporation route. The microstructure, morphologies, and photolu-minescence of the ZnO nanostructures were studied with X-ray diffraction, Raman spectra, scanning electron microscopy and photoluminescence spectra. The width of the nanobelts was about 500 nm and the length was longer than 10μm. The diameter of the hollow microspheres was between 5 and 10μm. A possible growth mechanism of the nanobelts, microspheres and urchins was proposed. The photoluminescence spectrum exhibited strong deep level energy emissions and a weak near band edge emission. These ZnO nanostructures on a copper substrate have the advantages of naturally good adhesion and electrical connection between the ZnO nanostructures and the conductive substrate.