电弧增材制造因其成形效率高、适用材料范围大、设备简单、工件尺寸不受限制等特点,在航空航天领域大型金属构件制备方面具有独特优势。对航空航天领域涉及的电弧熔丝增材制造(Wire and Arc Additive Manufacturing,WAAM)典型材料的微...电弧增材制造因其成形效率高、适用材料范围大、设备简单、工件尺寸不受限制等特点,在航空航天领域大型金属构件制备方面具有独特优势。对航空航天领域涉及的电弧熔丝增材制造(Wire and Arc Additive Manufacturing,WAAM)典型材料的微观组织及力学性能进行了总结分析,从增材过程工艺控制、增材后热处理以及复合增材技术三个方面综述了电弧熔丝增材工艺质量控制的方法,并概述了近年来大型金属构件电弧熔丝增材制造的应用情况,最后对大型金属零件电弧熔丝增材制造技术的发展方向进行了展望。展开更多
基金financial supports from the National Natural Science Foundation of China(Nos.52075250,52175468)the China Postdoctoral Science Foundation(No.2020M683376)+1 种基金State Key Laboratory of Advanced Welding and Joining,Harbin Institute of Technology,China(No.AWJ-22M13)the Fundamental Research Funds for the Central Universities,China(No.NT2021018)。
文摘电弧增材制造因其成形效率高、适用材料范围大、设备简单、工件尺寸不受限制等特点,在航空航天领域大型金属构件制备方面具有独特优势。对航空航天领域涉及的电弧熔丝增材制造(Wire and Arc Additive Manufacturing,WAAM)典型材料的微观组织及力学性能进行了总结分析,从增材过程工艺控制、增材后热处理以及复合增材技术三个方面综述了电弧熔丝增材工艺质量控制的方法,并概述了近年来大型金属构件电弧熔丝增材制造的应用情况,最后对大型金属零件电弧熔丝增材制造技术的发展方向进行了展望。