In recent years,along with the rapid expansion of power grids,the increasing complication of grid structures,and the development of smart grids and energy technologies,the lightning protection of power grids becomes i...In recent years,along with the rapid expansion of power grids,the increasing complication of grid structures,and the development of smart grids and energy technologies,the lightning protection of power grids becomes increasingly prominent.Power grids of China have acquired significant achievements on lightning protection technologies,which are reviewed in this paper.A technical route of lightning protection is introduced in detail; it allows us to find problems through detection and measurement of lightning,to analyze problems through evaluation and simulation of lightning,to solve problems through lightning protection measures,and to prevent problems through hazard risk warning of lightning.Following the route,the technical breakthroughs of these four aspects in China are presented,including the chinese lightning detection network(CLDN),natural lightning observations,lightning faults detection at transmission lines,lightning current measurements,progresses in lightning distribution maps,lightning fault replays,lightning hazard risk evaluations,and lightning simulated experiments,as well as novel lightning protection measures.The practical devices and systems corresponding to the technologies mentioned above are also introduced and discussed.Due to the progress of lightning protection technologies in recent years,despite the rapidly growing length of transmission lines in China,the lightning accident rate is controlled at a certain level.展开更多
Using lignite samples, selected from Zhaotong basin, Yunnan province, China, as the parent source, simulating experiments of lignite biogas were conducted with 0.1% methanol, 5 mg/L yeast extract and 0.2 mol/L sodium ...Using lignite samples, selected from Zhaotong basin, Yunnan province, China, as the parent source, simulating experiments of lignite biogas were conducted with 0.1% methanol, 5 mg/L yeast extract and 0.2 mol/L sodium acetate solutions as the exogenous substance respectively. Variation characteristics of gas production, gas composition, VFA content and activity of coenzyme 1:42o in the simulated process were analyzed to discuss the influence of different substrates on lignite biogas generation. The results show that 0.1% methanol and 5 mg/L yeast extract solutions increase VFA contents in the biogas generation system (p 〈 0.05) and inhibit coenzyme F420 and methanogen activities significantly, so they decrease both gas amounts (p 〈 0.05) and CH4 contents (p 〈 0.05). 0.2 mol/L sodium acetate solution activates coenzyme F42o and methanogen activities and improves the efficiency of enzymatic reaction, so the gas quantity (p 〈 0.05) and the CH4 content (p 〈 0.01) increase significantly. Therefore, sodium acetate can be one kind of good exogenous substance for the generation of lignite biogenic gas.展开更多
In modem four-stroke engine technology, variable valve timing and lift control offers potential benefits for making a high-performance engine. A novel electro-hydraulic fully variable valve train for four-stroke autom...In modem four-stroke engine technology, variable valve timing and lift control offers potential benefits for making a high-performance engine. A novel electro-hydraulic fully variable valve train for four-stroke automotive engines is introduced. The construction of the nonlinear mathematic model of the valve train system and its dynamic analysis are also presented. Experimental and simulation results show that the novel electro-hydraulic valve train can achieve fully variable valve timing and lift control. Consequently the engine performance on different loads and speeds will be significantly increased. The technology also permits the elimination of the traditional throttle valve in the gasoline engines and increases engine design flexibility.展开更多
Hot compression of 7050 aluminum alloy was performed on Gleeble 1500D thermo-mechanical simulator at 350 ℃ and 450 ℃ with a constant strain rate of 0.1 s-1 to different nominal strains of 0.1, 0.3 and 0.7. Microstru...Hot compression of 7050 aluminum alloy was performed on Gleeble 1500D thermo-mechanical simulator at 350 ℃ and 450 ℃ with a constant strain rate of 0.1 s-1 to different nominal strains of 0.1, 0.3 and 0.7. Microstructures of 7050 alloy under various compression conditions were observed by TEM to investigate the microstructure evolution process of the alloy deformed at various temperatures. The microstructure evolves from dislocation tangles to cell structure and subgrain structure when being deformed at 350 ℃, of which dynamic recovery is the softening mechanism. However, continuous dynamic recrystallization (DRX) occurs during hot deformation at 450 ℃, in which the main nucleation mechanisms of DRX are subgrain growth and subgrain coalescence rather than particle-simulated nucleation (PSN).展开更多
There are three well known types of wire lines for transmitting electrical energy or information. The first type is ordinary two wires line (below A-Line). The second type is so-called single-wire line, where ground...There are three well known types of wire lines for transmitting electrical energy or information. The first type is ordinary two wires line (below A-Line). The second type is so-called single-wire line, where ground plays the role instead of second wire. Polyphase systems belong to the third type, three phase system is the most popular among them. The purpose of this article is another attempt to build a one-wired (without ground) system--the transmission of electrical energy. In this paper an original idea of building such a system is justified, the results of simulations and laboratory modeling are presented. It is shown that the proposed method can reduce the cost of electric transmission lines, the losses in them and significantly reduce interferences.展开更多
基金Project supported by National Basic Research Program of China (973 Program) (2011CB209400), National Fligh-tech Research and Developmerit Program of China (863 Program (2011AA040405), National Natural Science Foundation of China (Ul134106), 3551 Optics Valley Personal Plan of Wuhan East Lake High-tech Development Zone, Science and Technology Program of SGCC(SG[2009], SG[2013]).
文摘In recent years,along with the rapid expansion of power grids,the increasing complication of grid structures,and the development of smart grids and energy technologies,the lightning protection of power grids becomes increasingly prominent.Power grids of China have acquired significant achievements on lightning protection technologies,which are reviewed in this paper.A technical route of lightning protection is introduced in detail; it allows us to find problems through detection and measurement of lightning,to analyze problems through evaluation and simulation of lightning,to solve problems through lightning protection measures,and to prevent problems through hazard risk warning of lightning.Following the route,the technical breakthroughs of these four aspects in China are presented,including the chinese lightning detection network(CLDN),natural lightning observations,lightning faults detection at transmission lines,lightning current measurements,progresses in lightning distribution maps,lightning fault replays,lightning hazard risk evaluations,and lightning simulated experiments,as well as novel lightning protection measures.The practical devices and systems corresponding to the technologies mentioned above are also introduced and discussed.Due to the progress of lightning protection technologies in recent years,despite the rapidly growing length of transmission lines in China,the lightning accident rate is controlled at a certain level.
基金supported by the National Natural Science Key Foundation of China (Nos. 41202119 and 41272177)the National Natural Science Key Foundation of China (No. 41202237)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘Using lignite samples, selected from Zhaotong basin, Yunnan province, China, as the parent source, simulating experiments of lignite biogas were conducted with 0.1% methanol, 5 mg/L yeast extract and 0.2 mol/L sodium acetate solutions as the exogenous substance respectively. Variation characteristics of gas production, gas composition, VFA content and activity of coenzyme 1:42o in the simulated process were analyzed to discuss the influence of different substrates on lignite biogas generation. The results show that 0.1% methanol and 5 mg/L yeast extract solutions increase VFA contents in the biogas generation system (p 〈 0.05) and inhibit coenzyme F420 and methanogen activities significantly, so they decrease both gas amounts (p 〈 0.05) and CH4 contents (p 〈 0.05). 0.2 mol/L sodium acetate solution activates coenzyme F42o and methanogen activities and improves the efficiency of enzymatic reaction, so the gas quantity (p 〈 0.05) and the CH4 content (p 〈 0.01) increase significantly. Therefore, sodium acetate can be one kind of good exogenous substance for the generation of lignite biogenic gas.
文摘In modem four-stroke engine technology, variable valve timing and lift control offers potential benefits for making a high-performance engine. A novel electro-hydraulic fully variable valve train for four-stroke automotive engines is introduced. The construction of the nonlinear mathematic model of the valve train system and its dynamic analysis are also presented. Experimental and simulation results show that the novel electro-hydraulic valve train can achieve fully variable valve timing and lift control. Consequently the engine performance on different loads and speeds will be significantly increased. The technology also permits the elimination of the traditional throttle valve in the gasoline engines and increases engine design flexibility.
文摘Hot compression of 7050 aluminum alloy was performed on Gleeble 1500D thermo-mechanical simulator at 350 ℃ and 450 ℃ with a constant strain rate of 0.1 s-1 to different nominal strains of 0.1, 0.3 and 0.7. Microstructures of 7050 alloy under various compression conditions were observed by TEM to investigate the microstructure evolution process of the alloy deformed at various temperatures. The microstructure evolves from dislocation tangles to cell structure and subgrain structure when being deformed at 350 ℃, of which dynamic recovery is the softening mechanism. However, continuous dynamic recrystallization (DRX) occurs during hot deformation at 450 ℃, in which the main nucleation mechanisms of DRX are subgrain growth and subgrain coalescence rather than particle-simulated nucleation (PSN).
文摘There are three well known types of wire lines for transmitting electrical energy or information. The first type is ordinary two wires line (below A-Line). The second type is so-called single-wire line, where ground plays the role instead of second wire. Polyphase systems belong to the third type, three phase system is the most popular among them. The purpose of this article is another attempt to build a one-wired (without ground) system--the transmission of electrical energy. In this paper an original idea of building such a system is justified, the results of simulations and laboratory modeling are presented. It is shown that the proposed method can reduce the cost of electric transmission lines, the losses in them and significantly reduce interferences.