A macro-circuit equivalent model for ferroelectric liquid crystal (FLC) is proposed. The model includes both effects of ferroelectric toque and dielectric torque and is utilized to simulate the switching response an...A macro-circuit equivalent model for ferroelectric liquid crystal (FLC) is proposed. The model includes both effects of ferroelectric toque and dielectric torque and is utilized to simulate the switching response and memory behavior of a single FLC cell . Simulation results show that the delay time has a minimum while increasing the amplitude of drive voltage and the amplitude of bipolar pulses should be controlled within a certain range to realize the memory behavior. Also the switching angle is successfully enhanced to the reference value of 22.5° by adopting "AC stabihzation" addressing method.展开更多
基金Supported by the National Natural Science Foundation of China (No. 10174057 90201011), the Technology Import Item of Ministry of Education (No. 105148), the Application Foundation of Sichuan Province (No. 03JY029-048-1 ) and the Science Study Foundation of Southwest Jiaotong University (No. 2001B11).
文摘A macro-circuit equivalent model for ferroelectric liquid crystal (FLC) is proposed. The model includes both effects of ferroelectric toque and dielectric torque and is utilized to simulate the switching response and memory behavior of a single FLC cell . Simulation results show that the delay time has a minimum while increasing the amplitude of drive voltage and the amplitude of bipolar pulses should be controlled within a certain range to realize the memory behavior. Also the switching angle is successfully enhanced to the reference value of 22.5° by adopting "AC stabihzation" addressing method.