Although ammonium dinitramide(ADN)has been targeted as a potential green monopropellant in future space vehicles,its application potential in Micro-electrical–Mechanical System(MEMS)thrusters or microthrusters has be...Although ammonium dinitramide(ADN)has been targeted as a potential green monopropellant in future space vehicles,its application potential in Micro-electrical–Mechanical System(MEMS)thrusters or microthrusters has been seldom reported in open literature.In this paper,electrolytic decomposition of Ammonium Dinitramide(ADN)-based liquid monopropellant FLP-103 was carried out in an open chamber and MEMS thrusters were fabricated from poly-dimethylsiloxane(PDMS)to characterize the power consumption.Two thrust measurement methods were employed to investigate the electrolytic decomposition of FLP-103 in MEMS microthrusters.The results show that the monopropellant can be successfully ignited at room temperature through 80 V,0.1 A(8 W)using copper wire as electrodes.In the current thruster design,low thrust was obtained at FLP-103 flowrate of 40μl·min^(-1)but it generated the highest specific impulse,Isp,among all the flowrates tested.The experiments successfully demonstrated the potential application of electrolytic decomposition of FLP-103 in MEMS thrusters.展开更多
Photoelectrochemical (PEC) water splitting is a promising approach to harvest and store solar energy [1]. Silicon has been widely investigated for PEC photoelectrodes due to its suitable band gap (1.12 eV) matchin...Photoelectrochemical (PEC) water splitting is a promising approach to harvest and store solar energy [1]. Silicon has been widely investigated for PEC photoelectrodes due to its suitable band gap (1.12 eV) matching the solar spectrum [2]. Here we investigate employing nickel both as a catalyst and protecting layer of a p-type silicon photocathode for photoelectrochemical hydrogen evolution in basic electrolytes for the first time. The silicon photocathode was made by depositing 15 nm Ti on a p-type silicon wafer followed by 5 nm Ni. The photocathode afforded an onset potential of -0.3 V vs. the reversible hydrogen electrode (RHE) in alkaline solution (1 M KOH). The stability of the Ni/Ti/p-Si photocathode showed a 100 mV decay over 12 h in KOH, but the stability was significantly improved when the photocathode was operated in potassium borate buffer solution (pH ≈ 9.5). The electrode surface was found to remain intact after 12 h of continuous operation at a constant current density of 10 mA/cm^2 in potassium borate buffer, suggesting that Ni affords good protection of Si based photocathodes in borate buffers.展开更多
基金Supported by the Project of Ministry of Science,Technology and Innovation,Malaysia(MOSTI)(No.04-02-12-SF0160)
文摘Although ammonium dinitramide(ADN)has been targeted as a potential green monopropellant in future space vehicles,its application potential in Micro-electrical–Mechanical System(MEMS)thrusters or microthrusters has been seldom reported in open literature.In this paper,electrolytic decomposition of Ammonium Dinitramide(ADN)-based liquid monopropellant FLP-103 was carried out in an open chamber and MEMS thrusters were fabricated from poly-dimethylsiloxane(PDMS)to characterize the power consumption.Two thrust measurement methods were employed to investigate the electrolytic decomposition of FLP-103 in MEMS microthrusters.The results show that the monopropellant can be successfully ignited at room temperature through 80 V,0.1 A(8 W)using copper wire as electrodes.In the current thruster design,low thrust was obtained at FLP-103 flowrate of 40μl·min^(-1)but it generated the highest specific impulse,Isp,among all the flowrates tested.The experiments successfully demonstrated the potential application of electrolytic decomposition of FLP-103 in MEMS thrusters.
基金supported by the National Natural Science Foundation of China(52272206,51972132 and 51772116)the Program for HUST Academic Frontier Youth Team(2016QYTD04).
文摘Photoelectrochemical (PEC) water splitting is a promising approach to harvest and store solar energy [1]. Silicon has been widely investigated for PEC photoelectrodes due to its suitable band gap (1.12 eV) matching the solar spectrum [2]. Here we investigate employing nickel both as a catalyst and protecting layer of a p-type silicon photocathode for photoelectrochemical hydrogen evolution in basic electrolytes for the first time. The silicon photocathode was made by depositing 15 nm Ti on a p-type silicon wafer followed by 5 nm Ni. The photocathode afforded an onset potential of -0.3 V vs. the reversible hydrogen electrode (RHE) in alkaline solution (1 M KOH). The stability of the Ni/Ti/p-Si photocathode showed a 100 mV decay over 12 h in KOH, but the stability was significantly improved when the photocathode was operated in potassium borate buffer solution (pH ≈ 9.5). The electrode surface was found to remain intact after 12 h of continuous operation at a constant current density of 10 mA/cm^2 in potassium borate buffer, suggesting that Ni affords good protection of Si based photocathodes in borate buffers.