Thick earth-rock filled embankment of large earthwork volume often occurs during the construction of expressways in mountainous and hilly areas. The compaction quality of earth-rock filled subgrade will directly affec...Thick earth-rock filled embankment of large earthwork volume often occurs during the construction of expressways in mountainous and hilly areas. The compaction quality of earth-rock filled subgrade will directly affect the settlement deformation and stability of the embankment after filled. Therefore, effective evaluation on the compaction quality of the earth-rock filled subgrade is an unsolved critical technical issue to control the construction quality of highway engineering. Based on the wave propagation and electrical resistivity characteristics of the earth and rock fillings, a theoretical model of the compaction quality detection by wave-electric field coupling imaging diagnostic method was established. Then, two filled subgrade models containing cavities and heterogeneous bodies respectively were make separately, and by the wave velocity testing and electrical resistivity testing, the wave-electric field coupling imaging diagnostic method was applied to these two model. The result shows that it is feasible to use the wave testing technique and the electrical resistivity testing technique for a diagnostic test of the subgrade compaction quality. Based on the abnormal areas reflected by the wave velocity imaging and electrical resistivity imaging results, we are able to analyze the scope and site of distress but not able to quantitatively evaluate the subgrade compaction quality. We can accurately qualitatively analyze the subgrade compaction quality based on the wave-electric field coupling calculation model of fill subgrade quality proposed by this paper.展开更多
A discontinuous Galerkin (DG) finite element method is presented to solve the thermoelastic coupling problems caused by temperature and pressure dependent thermal contact resistance (TCR).The whole analysis is made up...A discontinuous Galerkin (DG) finite element method is presented to solve the thermoelastic coupling problems caused by temperature and pressure dependent thermal contact resistance (TCR).The whole analysis is made up of two parts,thermal and mechanical analysis.In thermal analysis,the DG method is employed to simulate the temperature jump phenomenon,which satisfies the imperfect thermal contact condition in a straightforward manner.In mechanical analysis,the impenetrability condition is fulfilled through a DG approach with penalty functions.The Picard iteration procedure with a relaxation technique is also adopted to accelerate the rate of convergence and avoid numerical instability.Numerical examples show that the present method is an attractive approach for solving thermoelastic coupling problems caused by TCR.The methodology can also be expanded to solve problems with friction finite deformation contact,node-to-segment contact and node-to-surface contact,etc.in a straightforward manner.展开更多
基金funded by National Natural Science Foundation of China(Grant No.51279219 and Grant No.51609027)Chongqing Research Program of Basic Research and Frontier Technology(Grant No.cstc2016jcyj A0016)
文摘Thick earth-rock filled embankment of large earthwork volume often occurs during the construction of expressways in mountainous and hilly areas. The compaction quality of earth-rock filled subgrade will directly affect the settlement deformation and stability of the embankment after filled. Therefore, effective evaluation on the compaction quality of the earth-rock filled subgrade is an unsolved critical technical issue to control the construction quality of highway engineering. Based on the wave propagation and electrical resistivity characteristics of the earth and rock fillings, a theoretical model of the compaction quality detection by wave-electric field coupling imaging diagnostic method was established. Then, two filled subgrade models containing cavities and heterogeneous bodies respectively were make separately, and by the wave velocity testing and electrical resistivity testing, the wave-electric field coupling imaging diagnostic method was applied to these two model. The result shows that it is feasible to use the wave testing technique and the electrical resistivity testing technique for a diagnostic test of the subgrade compaction quality. Based on the abnormal areas reflected by the wave velocity imaging and electrical resistivity imaging results, we are able to analyze the scope and site of distress but not able to quantitatively evaluate the subgrade compaction quality. We can accurately qualitatively analyze the subgrade compaction quality based on the wave-electric field coupling calculation model of fill subgrade quality proposed by this paper.
基金supported by the National Natural Science Foundation of China(Grant No. 10872104)the Fundamental Research Funds for the Central Universities(Grant No. FRF-BR-10.007A)
文摘A discontinuous Galerkin (DG) finite element method is presented to solve the thermoelastic coupling problems caused by temperature and pressure dependent thermal contact resistance (TCR).The whole analysis is made up of two parts,thermal and mechanical analysis.In thermal analysis,the DG method is employed to simulate the temperature jump phenomenon,which satisfies the imperfect thermal contact condition in a straightforward manner.In mechanical analysis,the impenetrability condition is fulfilled through a DG approach with penalty functions.The Picard iteration procedure with a relaxation technique is also adopted to accelerate the rate of convergence and avoid numerical instability.Numerical examples show that the present method is an attractive approach for solving thermoelastic coupling problems caused by TCR.The methodology can also be expanded to solve problems with friction finite deformation contact,node-to-segment contact and node-to-surface contact,etc.in a straightforward manner.