The predictive capacity of numerical analyses in geotechnical engineering depends strongly on the efficiency of constitutive models used for modeling of interfaces behavior.Interfaces are considered as thin layers of ...The predictive capacity of numerical analyses in geotechnical engineering depends strongly on the efficiency of constitutive models used for modeling of interfaces behavior.Interfaces are considered as thin layers of the soil adjacent to structures boundary whose major role is transferring loads from structures to soil masses.An interface model within the bounding surface plasticity framework and the critical state soil mechanics is presented.To this aim,general formulation of the interface model according to the bounding surface plasticity theory is described first.Similar to granular soils,it has been shown that the mechanical behavior of sand-structure interfaces is highly affected by the interface state that is the combined influences of density and applied normal stress.Therefore,several ingredients of the model are directly related to the interface state.As a result of this feature,the model is enabled to distinguish interfaces in dense state from those in loose state and to provide realistic predictions over wide ranges of density and normal stress values.In evaluation of the model,a reasonable correspondence between the model predictions and the experimental data of various research teams is found.展开更多
This research sought to improve the properties of SAC305 solder joints by the addition of 1 and 2 wt.%Bi.The effects of bismuth doping on the microstructure,thermal properties,and mechanical performance of the SAC305−...This research sought to improve the properties of SAC305 solder joints by the addition of 1 and 2 wt.%Bi.The effects of bismuth doping on the microstructure,thermal properties,and mechanical performance of the SAC305−xBiCu solder joints were investigated.Bi-doping modified the microstructure of the solder joints by refining the primaryβ-Sn and eutectic phases.Bi-doping below 2 wt.%dissolved in theβ-Sn matrix and formed a solid solution,whereas Bi additions equal to or greater than 2 wt.%formed Bi precipitates in theβ-Sn matrix.Solid solution strengthening and precipitation strengthening mechanisms in theβ-Sn matrix increased the ultimate tensile strength and microhardness of the alloy from 35.7 MPa and 12.6 HV to 55.3 MPa and 20.8 HV,respectively,but elongation decreased from 24.6%to 16.1%.The fracture surface of a solder joint containing 2 wt.%Bi was typical of a brittle failure rather than a ductile failure.The interfacial layer of all solder joints comprised two parallel IMC layers:a layer of Cu6Sn5 and a layer of Cu3Sn.The interfacial layer was thinner and the shear strength was greater in SAC305−xBiCu joints than in SAC305Cu solder joints.Therefore,small addition of Bi refined microstructure,reduced melting temperature and improved the mechanical performance of SAC305Cu solder joints.展开更多
To investigate the dynamic behavior and energy dissipation of the rock−concrete interface,dynamic splitting tests on bi-material discs were conducted by using the split Hopkinson pressure bar.The test results reveal t...To investigate the dynamic behavior and energy dissipation of the rock−concrete interface,dynamic splitting tests on bi-material discs were conducted by using the split Hopkinson pressure bar.The test results reveal that with the change of the interface inclination angles(θ),the influence of interface groove width on the bearing capacity of specimens also varies.Whenθincreases from 0°to 30°,the bearing capacity of the specimen increases first and then decreases with the rise of the interface groove width;the optimal groove width on the rock surface in this range of interface inclination angles is 5 mm.Whenθincreases from 45°to 90°,the bearing capacity of the specimen has no obvious change.Moreover,whenθincreases from 0°to 45°,the dissipated energy of the specimens rises obviously at first and then tends to be stable as the width of the interface groove increases.展开更多
Currently for the steel tube reinforced concrete composite pile research, although predecessors make a comprehensive research on the composite pile beating performance, design technology, but there are still many prob...Currently for the steel tube reinforced concrete composite pile research, although predecessors make a comprehensive research on the composite pile beating performance, design technology, but there are still many problems have not been solved, such as the steel tube reinforced concrete pile composite interracial force learn performance research is still in the initial stage. In this paper, we mainly discuss the research methods of several interface mechanical properties and propose the possibility of studying the mechanical properties of the steel tube reinforced concrete composite pile by using the principle of ultrasonic speckle.展开更多
The micro/-nanoscaled functional biointerfaces aroused much interest of their key unit element to present unique functions. So far it is still difficult to describe the whole picture of this process. More and more evi...The micro/-nanoscaled functional biointerfaces aroused much interest of their key unit element to present unique functions. So far it is still difficult to describe the whole picture of this process. More and more evidences are beginning to support the theory of ‘‘mirco/-nanotopography-coupled-mechanical(TCM) action'' into functional biointerfaces.Herein, we aim to highlight TCM action on varied micro/-nanoscaled functional biointerfaces, namely to achieve better understanding of micro/-nanoscaled structures by introducing interfacial mechanical behaviors. In this article, recent progressions on ‘‘TCM on air/liquid/solid-phase biointerfaces in nature'', ‘‘in vivo TCM behaviors at micro/-nanoscales' ',‘‘TCM in micro/-nanoscaled artificial surface with living Cells' ' and ‘‘topography, interfacial curvature, mechanics' 'are reviewed. Certain new concepts of ‘‘TCM action based on spatial curvature'', ‘‘medically functional biointerfaces' ' and‘‘biomechanopharmacology'' are also proposed.展开更多
文摘The predictive capacity of numerical analyses in geotechnical engineering depends strongly on the efficiency of constitutive models used for modeling of interfaces behavior.Interfaces are considered as thin layers of the soil adjacent to structures boundary whose major role is transferring loads from structures to soil masses.An interface model within the bounding surface plasticity framework and the critical state soil mechanics is presented.To this aim,general formulation of the interface model according to the bounding surface plasticity theory is described first.Similar to granular soils,it has been shown that the mechanical behavior of sand-structure interfaces is highly affected by the interface state that is the combined influences of density and applied normal stress.Therefore,several ingredients of the model are directly related to the interface state.As a result of this feature,the model is enabled to distinguish interfaces in dense state from those in loose state and to provide realistic predictions over wide ranges of density and normal stress values.In evaluation of the model,a reasonable correspondence between the model predictions and the experimental data of various research teams is found.
文摘This research sought to improve the properties of SAC305 solder joints by the addition of 1 and 2 wt.%Bi.The effects of bismuth doping on the microstructure,thermal properties,and mechanical performance of the SAC305−xBiCu solder joints were investigated.Bi-doping modified the microstructure of the solder joints by refining the primaryβ-Sn and eutectic phases.Bi-doping below 2 wt.%dissolved in theβ-Sn matrix and formed a solid solution,whereas Bi additions equal to or greater than 2 wt.%formed Bi precipitates in theβ-Sn matrix.Solid solution strengthening and precipitation strengthening mechanisms in theβ-Sn matrix increased the ultimate tensile strength and microhardness of the alloy from 35.7 MPa and 12.6 HV to 55.3 MPa and 20.8 HV,respectively,but elongation decreased from 24.6%to 16.1%.The fracture surface of a solder joint containing 2 wt.%Bi was typical of a brittle failure rather than a ductile failure.The interfacial layer of all solder joints comprised two parallel IMC layers:a layer of Cu6Sn5 and a layer of Cu3Sn.The interfacial layer was thinner and the shear strength was greater in SAC305−xBiCu joints than in SAC305Cu solder joints.Therefore,small addition of Bi refined microstructure,reduced melting temperature and improved the mechanical performance of SAC305Cu solder joints.
基金supported by the National Natural Science Foundation of China (No.41772313)the National Natural Science Foundation for Young Scientists of China (No.52104111)+3 种基金the Hunan Science and Technology Planning Project,China (No.2019RS3001)the Natural Science Foundation of Hunan Province,China (No.2021JJ30819)Key Science and Technology Project of Guangxi Transportation Industry (Research on fine blasting and disaster control technology of mountain expressway tunnel),Chinathe financial contribution and convey their appreciation for supporting this basic research。
文摘To investigate the dynamic behavior and energy dissipation of the rock−concrete interface,dynamic splitting tests on bi-material discs were conducted by using the split Hopkinson pressure bar.The test results reveal that with the change of the interface inclination angles(θ),the influence of interface groove width on the bearing capacity of specimens also varies.Whenθincreases from 0°to 30°,the bearing capacity of the specimen increases first and then decreases with the rise of the interface groove width;the optimal groove width on the rock surface in this range of interface inclination angles is 5 mm.Whenθincreases from 45°to 90°,the bearing capacity of the specimen has no obvious change.Moreover,whenθincreases from 0°to 45°,the dissipated energy of the specimens rises obviously at first and then tends to be stable as the width of the interface groove increases.
文摘Currently for the steel tube reinforced concrete composite pile research, although predecessors make a comprehensive research on the composite pile beating performance, design technology, but there are still many problems have not been solved, such as the steel tube reinforced concrete pile composite interracial force learn performance research is still in the initial stage. In this paper, we mainly discuss the research methods of several interface mechanical properties and propose the possibility of studying the mechanical properties of the steel tube reinforced concrete composite pile by using the principle of ultrasonic speckle.
基金supported by the project of 973 in Ministry of Science and Technology of China(2012CB933800)the Key Research Program of the Chinese Academy of Sciences(KJZD-EW-M01)
文摘The micro/-nanoscaled functional biointerfaces aroused much interest of their key unit element to present unique functions. So far it is still difficult to describe the whole picture of this process. More and more evidences are beginning to support the theory of ‘‘mirco/-nanotopography-coupled-mechanical(TCM) action'' into functional biointerfaces.Herein, we aim to highlight TCM action on varied micro/-nanoscaled functional biointerfaces, namely to achieve better understanding of micro/-nanoscaled structures by introducing interfacial mechanical behaviors. In this article, recent progressions on ‘‘TCM on air/liquid/solid-phase biointerfaces in nature'', ‘‘in vivo TCM behaviors at micro/-nanoscales' ',‘‘TCM in micro/-nanoscaled artificial surface with living Cells' ' and ‘‘topography, interfacial curvature, mechanics' 'are reviewed. Certain new concepts of ‘‘TCM action based on spatial curvature'', ‘‘medically functional biointerfaces' ' and‘‘biomechanopharmacology'' are also proposed.