Color tunable quantum dots(QDs) based on the Cu, Mn, Ag co-doped Zn In S core and Zn S outer-shell were synthesized by using an eco-friendly method. Core-shell doped QDs with the average size of 3.85 nm were obtaine...Color tunable quantum dots(QDs) based on the Cu, Mn, Ag co-doped Zn In S core and Zn S outer-shell were synthesized by using an eco-friendly method. Core-shell doped QDs with the average size of 3.85 nm were obtained by using a one-pot synthesis followed by a hot injection with n-dodecanethiol(DDT) and oleylamine(OLA) as stabilizers in oil phase. Cu, Mn and Ag ions were introduced as single-dopant or co-dopants during the synthesis, providing an effective means to control the emission color of the QDs. The as-synthesized QDs showed photoluminescence emission ranging from green(530 nm) to near-red(613 nm), adjusted by doping components, dopant concentration, and Zn/In ratio. Importantly, quasi-white emission has been achieved by controlling the concentration of co-doped metal ions(Mn, Cu and Ag). The primary results demonstrated the promising potential of co-doped QDs as alternative materials for future high quality white LED applications.展开更多
基金Projects(61675049,61377046,61144010,61177021) supported by the National Natural Science Foundation of China
文摘Color tunable quantum dots(QDs) based on the Cu, Mn, Ag co-doped Zn In S core and Zn S outer-shell were synthesized by using an eco-friendly method. Core-shell doped QDs with the average size of 3.85 nm were obtained by using a one-pot synthesis followed by a hot injection with n-dodecanethiol(DDT) and oleylamine(OLA) as stabilizers in oil phase. Cu, Mn and Ag ions were introduced as single-dopant or co-dopants during the synthesis, providing an effective means to control the emission color of the QDs. The as-synthesized QDs showed photoluminescence emission ranging from green(530 nm) to near-red(613 nm), adjusted by doping components, dopant concentration, and Zn/In ratio. Importantly, quasi-white emission has been achieved by controlling the concentration of co-doped metal ions(Mn, Cu and Ag). The primary results demonstrated the promising potential of co-doped QDs as alternative materials for future high quality white LED applications.