In time series modeling, the residuals are often checked for white noise and normality. In practice, the useful tests are Ljung Box test. Mcleod Li test and Lin Mudholkar test. In this paper, we present a nonparame...In time series modeling, the residuals are often checked for white noise and normality. In practice, the useful tests are Ljung Box test. Mcleod Li test and Lin Mudholkar test. In this paper, we present a nonparametric approach for checking the residuals of time series models. This approach is based on the maximal correlation coefficient ρ 2 * between the residuals and time t . The basic idea is to use the bootstrap to form the null distribution of the statistic ρ 2 * under the null hypothesis H 0:ρ 2 * =0. For calculating ρ 2 * , we proposes a ρ algorithm, analogous to ACE procedure. Power study shows this approach is more powerful than Ljung Box test. Meanwhile, some numerical results and two examples are reported in this paper.展开更多
White noise deconvolution or input white noise estimation problem has important appli-cation backgrounds in oil seismic exploration,communication and signal processing.By the modern time series analysis method,based o...White noise deconvolution or input white noise estimation problem has important appli-cation backgrounds in oil seismic exploration,communication and signal processing.By the modern time series analysis method,based on the Auto-Regressive Moving Average(ARMA) innovation model,under the linear minimum variance optimal fusion rules,three optimal weighted fusion white noise deconvolution estimators are presented for the multisensor systems with time-delayed measurements and colored measurement noises.They can handle the input white noise fused filtering,prediction and smoothing problems.The accuracy of the fusers is higher than that of each local white noise estimator.In order to compute the optimal weights,the formula of computing the local estimation error cross-covariances is given.A Monte Carlo simulation example for the system with 3 sensors and the Bernoulli-Gaussian input white noise shows their effectiveness and performances.展开更多
文摘In time series modeling, the residuals are often checked for white noise and normality. In practice, the useful tests are Ljung Box test. Mcleod Li test and Lin Mudholkar test. In this paper, we present a nonparametric approach for checking the residuals of time series models. This approach is based on the maximal correlation coefficient ρ 2 * between the residuals and time t . The basic idea is to use the bootstrap to form the null distribution of the statistic ρ 2 * under the null hypothesis H 0:ρ 2 * =0. For calculating ρ 2 * , we proposes a ρ algorithm, analogous to ACE procedure. Power study shows this approach is more powerful than Ljung Box test. Meanwhile, some numerical results and two examples are reported in this paper.
基金Supported by the National Natural Science Foundation of China (No.60874063)Science and Technology Re-search Foundation of Heilongjiang Education Department (No.11523037)
文摘White noise deconvolution or input white noise estimation problem has important appli-cation backgrounds in oil seismic exploration,communication and signal processing.By the modern time series analysis method,based on the Auto-Regressive Moving Average(ARMA) innovation model,under the linear minimum variance optimal fusion rules,three optimal weighted fusion white noise deconvolution estimators are presented for the multisensor systems with time-delayed measurements and colored measurement noises.They can handle the input white noise fused filtering,prediction and smoothing problems.The accuracy of the fusers is higher than that of each local white noise estimator.In order to compute the optimal weights,the formula of computing the local estimation error cross-covariances is given.A Monte Carlo simulation example for the system with 3 sensors and the Bernoulli-Gaussian input white noise shows their effectiveness and performances.