In this paper,we introduced parameterizations of the salinity effects(on heat capacity,thermal conductivity,freezing point and saturated vapor pressure) in a lake scheme integrated in the Weather Research and Forecast...In this paper,we introduced parameterizations of the salinity effects(on heat capacity,thermal conductivity,freezing point and saturated vapor pressure) in a lake scheme integrated in the Weather Research and Forecasting model coupled with the Community Land Model(WRF-CLM). This was done to improve temperature simulation over and in a saline lake and to test the contributions of salinity effects on various water properties via sensitivity experiments. The modified lake scheme consists of the lake module in the CLM model,which is the land component of the WRF-CLM model. The Great Salt Lake(GSL) in the USA was selected as the study area. The simulation was performed from September 3,2001 to September 30,2002. Our results show that the modif ied WRF-CLM model that includes the lake scheme considering salinity effects can reasonably simulate temperature over and in the GSL. This model had much greater accuracy than neglecting salinity effects,particularly in a very cold event when that effect alters the freezing point. The salinity effect on saturated vapor pressure can reduce latent heat flux over the lake and make it slightly warmer. The salinity effect on heat capacity can also make lake temperature prone to changes. However,the salinity effect on thermal conductivity was found insignificant in our simulations.展开更多
To study the relationship between sediment transportation and saltwater intrusion in the Changjiang (Yangtze) estuary, a three-dimensional numerical model for temperature, salinity, velocity field, and suspended sedim...To study the relationship between sediment transportation and saltwater intrusion in the Changjiang (Yangtze) estuary, a three-dimensional numerical model for temperature, salinity, velocity field, and suspended sediment concentration was established based on the ECOMSED model. Using this model, sediment transportation in the flood season of 2005 was simulated for the Changjiang estuary. A comparison between simulated results and observation data for the tidal level, flow velocity and direction, salinity and suspended sediment concentration indicated that they were consistent in overall. Based on model verification, the simulation of saltwater intrusion and its effect on sediment in the Changjiang estuary was analyzed in detail. The saltwater intrusion in the estuary including the formation, evolution, and disappearance of saltwater wedge and the induced vertical circulation were reproduced, and the crucial impact of the wedge on cohesive and non-cohesive suspended sediment distribution and transportation were successfully simulated. The result shows that near the salinity front, the simulated concentrations of both cohesive and non-cohesive suspended sediment at the surface layer had a strong relationship with the simulated velocity, especially when considering a 1-hour lag. However, in the bottom layer, there was no obvious correlation between them, because the saltwater wedge and its inducing vertical circulation may have resuspended loose sediment on the bed, thus forming a high-concentration area near the bottom even if the velocity near the bottom was very low during the transition phase from flood to ebb.展开更多
The authors examine the equilibrium climatic response to the direct radiative effect (DRE) of mineral dust and sea salt aerosols in a doubled-CO2 climate with two-way coupling of aerosol-climate interactions.In resp...The authors examine the equilibrium climatic response to the direct radiative effect (DRE) of mineral dust and sea salt aerosols in a doubled-CO2 climate with two-way coupling of aerosol-climate interactions.In response to the drier and windier conditions,dust emissions increase by 26% in the Sahara Desert and by 18% on the global scale relative to present day.Sea salt emissions increase in high latitudes (>60°) but decrease in middle latitudes (30°-60°) of both hemispheres due to the poleward shift of westerlies,leading to a 3% decrease in global emissions.The burdens of dust and sea salt increase by 31% and 7% respectively,because reductions in rainfall over the tropical oceans increase the lifetime of particles in the warmer climate.The higher aerosol loading in the doubled-CO2 climate reinforces aerosol DRE by -0.2 W m-2,leading to an additional cooling of 0.1℃ at the surface compared with the climatic effects of aerosols in present day.The additional cooling from changes in natural aerosols compensates for up to 15% of the regional warming induced by doubled CO2.展开更多
The effects of simulated acid rain retained in soil on the properties of acid soil and its diminishing by application of ground phosphate rock were investigated by using the sorption method. Results show as follows: (...The effects of simulated acid rain retained in soil on the properties of acid soil and its diminishing by application of ground phosphate rock were investigated by using the sorption method. Results show as follows: (1) For yellow brown soil, the effect of simulated acid rain on the properties of soil with a pH value of 5.9 was relatively small, except a great quantity of acid rain deposited on it. (2) For red soil, the effect of simulated acid rain on the properties of soil was significant. With the increase of the amount of acid deposition, the pH value of soil was declined, but the contents of exchangeable H+, Al3+ and Mn2+ and the amount of SO42- retention were increased. (3) Many properties of acid soils could be improved by applying ground phosphate rock. For example, pH value of soils and the amounts of available P and exchangeable Ca2+ and Mg2+ were increased, and the amounts of exchangeable H+ and Al3+ and SO42- retained was reduced. The application of ground posphate rock could effctively dimmish the pollution of acid rain to soil.展开更多
The petroleum industry has shown great interest in the study of drilling optimization on pre-salt formations given the low rates of penetration observed so far. Rate of penetration is the key to economically drill the...The petroleum industry has shown great interest in the study of drilling optimization on pre-salt formations given the low rates of penetration observed so far. Rate of penetration is the key to economically drill the pre-salt carbonate rock. This work presents the results of numerical modeling through finite element method and discrete element method for single cutter drilling in carbonate samples. The work is relevant to understand the mechanics of drill bit-rock interaction while drilling deep wells and the results were validated with experimental data raised under simulated downhole conditions. The numerical models were carried out under different geometrical configurations, varying the cutter chamfer size and back-rake angles. The forces generated on the cutter are translated into mechanical specific energy as this parameter is often used to measure drilling efficiency. Results indicate that the chamfer size does not change significantly the mechanical specific energy values, characteristic. Results also show there is a significant increase although the cutter aggressiveness is influenced by this geometrical in drilling resistance for larger values of back-rake angle.展开更多
Despite many studies on reconstructing the climate changes over the last millennium in China,the cause of the China's climate change remains unclear.We used the UVic Earth System Climate Model(UVic Model),an Earth...Despite many studies on reconstructing the climate changes over the last millennium in China,the cause of the China's climate change remains unclear.We used the UVic Earth System Climate Model(UVic Model),an Earth system model of intermediate complexity,to investigate the contributions of climate forcings(e.g.solar insolation variability,anomalous volcanic aerosols,greenhouse gas,solar orbital change,land cover changes,and anthropogenic sulfate aerosols) to surface air temperature over East China in the past millennium.The simulation of the UVic Model could reproduce the three main characteristic periods(e.g.the Medieval Warm Period(MWP),the Little Ice Age(LIA),and the 20th Century Warming Period(20CWP)) of the northern hemisphere and East China,which were consistent with the corresponding reconstructed air temperatures at century scales.The simulation result reflected that the air temperature anomalies of East China were larger than those of the global air temperature during the MWP and the first half of 20CWP and were lower than those during the LIA.The surface air temperature of East China over the past millennium has been divided into three periods in the MWP,four in the LIA,and one in the 20CWP.The MWP of East China was caused primarily by solar insolation and secondarily by volcanic aerosols.The variation of the LIA was dominated by the individual sizes of the contribution of solar insolation variability,greenhouse gas,and volcano aerosols.Greenhouse gas and volcano aerosols were the main forcings of the third and fourth periods of the LIA,respectively.We examined the nonlinear responses among the natural and anthropogenic forcings in terms of surface air temperature over East China.The nonlinear responses between the solar orbit change and anomalous volcano aerosols and those between the greenhouse gases and land cover change(or anthropogenic sulfate aerosols) all contributed approximately 0.2℃ by the end of 20th century.However,the output of the energy-moisture balance atmospheric model from UVic showed no obvious nonlinear responses between anthropogenic and natural forcings.The nonlinear responses among all the climate forcings(both anthropogenic and natural forcings) contributed to a temperature increase of approximately 0.27℃ at the end of the 20th century,accounting for approximately half of the warming during this period;the remainder was due to the climate forcings themselves.展开更多
基金Supported by the National Natural Science Foundation of China(No.41130961)the Strategic Priority Research Program(B)of Chinese Academy of Sciences(No.XDB03030300)+1 种基金the National Natural Science Foundation of China(Nos.41475011,41275014)Visiting Scholars Program of the Public School Study Abroad Project of Chinese Academy of Sciences(No.2008-No.136)
文摘In this paper,we introduced parameterizations of the salinity effects(on heat capacity,thermal conductivity,freezing point and saturated vapor pressure) in a lake scheme integrated in the Weather Research and Forecasting model coupled with the Community Land Model(WRF-CLM). This was done to improve temperature simulation over and in a saline lake and to test the contributions of salinity effects on various water properties via sensitivity experiments. The modified lake scheme consists of the lake module in the CLM model,which is the land component of the WRF-CLM model. The Great Salt Lake(GSL) in the USA was selected as the study area. The simulation was performed from September 3,2001 to September 30,2002. Our results show that the modif ied WRF-CLM model that includes the lake scheme considering salinity effects can reasonably simulate temperature over and in the GSL. This model had much greater accuracy than neglecting salinity effects,particularly in a very cold event when that effect alters the freezing point. The salinity effect on saturated vapor pressure can reduce latent heat flux over the lake and make it slightly warmer. The salinity effect on heat capacity can also make lake temperature prone to changes. However,the salinity effect on thermal conductivity was found insignificant in our simulations.
基金Supported by the National Natural Science Foundation of China (No. 40406025)the National High Technology Research and Development Program of China (863 Program) (No. 2006AA09Z157)
文摘To study the relationship between sediment transportation and saltwater intrusion in the Changjiang (Yangtze) estuary, a three-dimensional numerical model for temperature, salinity, velocity field, and suspended sediment concentration was established based on the ECOMSED model. Using this model, sediment transportation in the flood season of 2005 was simulated for the Changjiang estuary. A comparison between simulated results and observation data for the tidal level, flow velocity and direction, salinity and suspended sediment concentration indicated that they were consistent in overall. Based on model verification, the simulation of saltwater intrusion and its effect on sediment in the Changjiang estuary was analyzed in detail. The saltwater intrusion in the estuary including the formation, evolution, and disappearance of saltwater wedge and the induced vertical circulation were reproduced, and the crucial impact of the wedge on cohesive and non-cohesive suspended sediment distribution and transportation were successfully simulated. The result shows that near the salinity front, the simulated concentrations of both cohesive and non-cohesive suspended sediment at the surface layer had a strong relationship with the simulated velocity, especially when considering a 1-hour lag. However, in the bottom layer, there was no obvious correlation between them, because the saltwater wedge and its inducing vertical circulation may have resuspended loose sediment on the bed, thus forming a high-concentration area near the bottom even if the velocity near the bottom was very low during the transition phase from flood to ebb.
基金supported by the National Basic Research Program of China(973 program,Grant 2010CB951901)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant XDA05100503)
文摘The authors examine the equilibrium climatic response to the direct radiative effect (DRE) of mineral dust and sea salt aerosols in a doubled-CO2 climate with two-way coupling of aerosol-climate interactions.In response to the drier and windier conditions,dust emissions increase by 26% in the Sahara Desert and by 18% on the global scale relative to present day.Sea salt emissions increase in high latitudes (>60°) but decrease in middle latitudes (30°-60°) of both hemispheres due to the poleward shift of westerlies,leading to a 3% decrease in global emissions.The burdens of dust and sea salt increase by 31% and 7% respectively,because reductions in rainfall over the tropical oceans increase the lifetime of particles in the warmer climate.The higher aerosol loading in the doubled-CO2 climate reinforces aerosol DRE by -0.2 W m-2,leading to an additional cooling of 0.1℃ at the surface compared with the climatic effects of aerosols in present day.The additional cooling from changes in natural aerosols compensates for up to 15% of the regional warming induced by doubled CO2.
文摘The effects of simulated acid rain retained in soil on the properties of acid soil and its diminishing by application of ground phosphate rock were investigated by using the sorption method. Results show as follows: (1) For yellow brown soil, the effect of simulated acid rain on the properties of soil with a pH value of 5.9 was relatively small, except a great quantity of acid rain deposited on it. (2) For red soil, the effect of simulated acid rain on the properties of soil was significant. With the increase of the amount of acid deposition, the pH value of soil was declined, but the contents of exchangeable H+, Al3+ and Mn2+ and the amount of SO42- retention were increased. (3) Many properties of acid soils could be improved by applying ground phosphate rock. For example, pH value of soils and the amounts of available P and exchangeable Ca2+ and Mg2+ were increased, and the amounts of exchangeable H+ and Al3+ and SO42- retained was reduced. The application of ground posphate rock could effctively dimmish the pollution of acid rain to soil.
文摘The petroleum industry has shown great interest in the study of drilling optimization on pre-salt formations given the low rates of penetration observed so far. Rate of penetration is the key to economically drill the pre-salt carbonate rock. This work presents the results of numerical modeling through finite element method and discrete element method for single cutter drilling in carbonate samples. The work is relevant to understand the mechanics of drill bit-rock interaction while drilling deep wells and the results were validated with experimental data raised under simulated downhole conditions. The numerical models were carried out under different geometrical configurations, varying the cutter chamfer size and back-rake angles. The forces generated on the cutter are translated into mechanical specific energy as this parameter is often used to measure drilling efficiency. Results indicate that the chamfer size does not change significantly the mechanical specific energy values, characteristic. Results also show there is a significant increase although the cutter aggressiveness is influenced by this geometrical in drilling resistance for larger values of back-rake angle.
基金supported by the Major Project of National Natural Science Foundation of China (Grant No. 40890052)National Basic Research Progam of China (Grant No. 2007CB815901)+1 种基金National Natural Science Foundation of China (Grant No. 40805036)the Basic Research Fund of CAMS
文摘Despite many studies on reconstructing the climate changes over the last millennium in China,the cause of the China's climate change remains unclear.We used the UVic Earth System Climate Model(UVic Model),an Earth system model of intermediate complexity,to investigate the contributions of climate forcings(e.g.solar insolation variability,anomalous volcanic aerosols,greenhouse gas,solar orbital change,land cover changes,and anthropogenic sulfate aerosols) to surface air temperature over East China in the past millennium.The simulation of the UVic Model could reproduce the three main characteristic periods(e.g.the Medieval Warm Period(MWP),the Little Ice Age(LIA),and the 20th Century Warming Period(20CWP)) of the northern hemisphere and East China,which were consistent with the corresponding reconstructed air temperatures at century scales.The simulation result reflected that the air temperature anomalies of East China were larger than those of the global air temperature during the MWP and the first half of 20CWP and were lower than those during the LIA.The surface air temperature of East China over the past millennium has been divided into three periods in the MWP,four in the LIA,and one in the 20CWP.The MWP of East China was caused primarily by solar insolation and secondarily by volcanic aerosols.The variation of the LIA was dominated by the individual sizes of the contribution of solar insolation variability,greenhouse gas,and volcano aerosols.Greenhouse gas and volcano aerosols were the main forcings of the third and fourth periods of the LIA,respectively.We examined the nonlinear responses among the natural and anthropogenic forcings in terms of surface air temperature over East China.The nonlinear responses between the solar orbit change and anomalous volcano aerosols and those between the greenhouse gases and land cover change(or anthropogenic sulfate aerosols) all contributed approximately 0.2℃ by the end of 20th century.However,the output of the energy-moisture balance atmospheric model from UVic showed no obvious nonlinear responses between anthropogenic and natural forcings.The nonlinear responses among all the climate forcings(both anthropogenic and natural forcings) contributed to a temperature increase of approximately 0.27℃ at the end of the 20th century,accounting for approximately half of the warming during this period;the remainder was due to the climate forcings themselves.