将甲烷水蒸气重整制氢反应与熔融碳酸盐燃料电池技术相结合,构成了以甲烷为燃料气的直接内重整熔融碳酸盐燃料电池(D IR-M C FC)。考察了影响电池性能的条件,发现反应气压力增加会提高电池性能,反应气压力由0.1M Pa升至0.6 M Pa,在150 m...将甲烷水蒸气重整制氢反应与熔融碳酸盐燃料电池技术相结合,构成了以甲烷为燃料气的直接内重整熔融碳酸盐燃料电池(D IR-M C FC)。考察了影响电池性能的条件,发现反应气压力增加会提高电池性能,反应气压力由0.1M Pa升至0.6 M Pa,在150 m A/cm 2下,电池电压约提高200 m V;增加甲烷流量利于提高电池性能,但需要合理选择甲烷的利用率;常压下,进气水碳比为1时同等电流下电池初始电压较进气水碳比为2时高30~50 m V,而在0.6 M Pa下这两种进气水碳比对电池初性能影响不大;0.6 M Pa、水碳比为1时,催化剂容易积碳,从而降低电池运行的稳定性,因此,电池在较高压力下运行时应适当提高进气水碳比。展开更多
A detailed mathematical model of a direct internal reforming solid oxide fuel cell(DIR-SOFC) incorporating with simulation of chemical and physical processes in the fuel cell is presented. The model is developed based...A detailed mathematical model of a direct internal reforming solid oxide fuel cell(DIR-SOFC) incorporating with simulation of chemical and physical processes in the fuel cell is presented. The model is developed based on the reforming and electrochemical reaction mechanisms,mass and energy conservation,and heat transfer. A computational fluid dynamics(CFD) method is used for solving the complicated multiple partial differential equations(PDEs) to obtain the numerical approximations. The resulting distributions of chemical species concentrations,temperature and current density in a cross-flow DIR-SOFC are given and analyzed in detail. Further,the influence between distributions of chemical species concentrations,temperature and current density during the simulation is illustrated and discussed. The heat and mass transfer,and the kinetics of reforming and electrochemical reactions have significant effects on the parameter distributions within the cell. The results show the particular characteristics of the DIR-SOFC among fuel cells,and can aid in stack design and control.展开更多
文摘将甲烷水蒸气重整制氢反应与熔融碳酸盐燃料电池技术相结合,构成了以甲烷为燃料气的直接内重整熔融碳酸盐燃料电池(D IR-M C FC)。考察了影响电池性能的条件,发现反应气压力增加会提高电池性能,反应气压力由0.1M Pa升至0.6 M Pa,在150 m A/cm 2下,电池电压约提高200 m V;增加甲烷流量利于提高电池性能,但需要合理选择甲烷的利用率;常压下,进气水碳比为1时同等电流下电池初始电压较进气水碳比为2时高30~50 m V,而在0.6 M Pa下这两种进气水碳比对电池初性能影响不大;0.6 M Pa、水碳比为1时,催化剂容易积碳,从而降低电池运行的稳定性,因此,电池在较高压力下运行时应适当提高进气水碳比。
基金Project (No. 2006AA05Z148) supported by the Hi-Tech Research and Development Program (863) of China
文摘A detailed mathematical model of a direct internal reforming solid oxide fuel cell(DIR-SOFC) incorporating with simulation of chemical and physical processes in the fuel cell is presented. The model is developed based on the reforming and electrochemical reaction mechanisms,mass and energy conservation,and heat transfer. A computational fluid dynamics(CFD) method is used for solving the complicated multiple partial differential equations(PDEs) to obtain the numerical approximations. The resulting distributions of chemical species concentrations,temperature and current density in a cross-flow DIR-SOFC are given and analyzed in detail. Further,the influence between distributions of chemical species concentrations,temperature and current density during the simulation is illustrated and discussed. The heat and mass transfer,and the kinetics of reforming and electrochemical reactions have significant effects on the parameter distributions within the cell. The results show the particular characteristics of the DIR-SOFC among fuel cells,and can aid in stack design and control.