采用架空线的柔性直流输电技术是解决高渗透率、远距离可再生能源并网消纳的有效方案。然而,架空线路故障率较高,其直流故障穿越问题亟待研究。本文提出利用风场现有分散储能实现风电柔直并网直流故障穿越协调控制。首先,研究风电场接...采用架空线的柔性直流输电技术是解决高渗透率、远距离可再生能源并网消纳的有效方案。然而,架空线路故障率较高,其直流故障穿越问题亟待研究。本文提出利用风场现有分散储能实现风电柔直并网直流故障穿越协调控制。首先,研究风电场接入多端柔性直流输电系统(multi-terminal HVDC based on MMC, MMC–MTDC)中MMC及风电场储能系统等主要组成部分的拓扑结构和基本工作原理;其次,针对大规模风电经柔直并网系统的直流故障,定量分析非故障极功率裕量,通过控制风电机组全功率变流器现有并联储能系统来消纳故障期间的不平衡功率;针对不同功率消纳方案,提出由储能系统、换流站、直流断路器和风电场协调配合进行故障穿越,根据直流断路器动作信号进行故障分类,改变换流站控制方式与风电场出力,从而实现不同故障类型的快速恢复。该策略能够保持系统在故障期间并网运行且不出现闭锁、过载等问题,提升系统的稳定性。最后,在PSCAD/EMTDC仿真平台搭建上述仿真模型,详细研究了风电场经MMC–MTDC并网系统的直流故障穿越策略,验证了本文所提出的基于储能系统的直流故障穿越策略能够维持故障期间的功率平衡,实现故障快速恢复,平稳实现直流故障穿越。本文所提故障穿越策略有望对新能源柔直并网提供必要的依据和参考。展开更多
如何对直流故障电流进行有效抑制是实现柔性直流电网大规模发展的关键。为此,研究模块化多电平变换器(modular multilevel converter,MMC)的控制方法,提出一种针对半桥型MMC的两段式限流保护策略,通过减少子模块的投入数目来降低换流站...如何对直流故障电流进行有效抑制是实现柔性直流电网大规模发展的关键。为此,研究模块化多电平变换器(modular multilevel converter,MMC)的控制方法,提出一种针对半桥型MMC的两段式限流保护策略,通过减少子模块的投入数目来降低换流站直流出口电压,达到限制短路电流的目的。首先,介绍MMC的拓扑结构及基于MMC的高压直流输电(MMC based high voltage direct current,MMC-HVDC)系统控制策略;其次,分析两段式限流保护策略的原理与直流故障电流特性,介绍MMC-HVDC系统的直流故障保护策略;最后,通过双端MMC-HVDC系统仿真实验,对所提限流保护策略的有效性进行验证。仿真结果表明,两段式限流保护策略可以有效降低断路器开断电流和吸收能量,节约成本。展开更多
文摘采用架空线的柔性直流输电技术是解决高渗透率、远距离可再生能源并网消纳的有效方案。然而,架空线路故障率较高,其直流故障穿越问题亟待研究。本文提出利用风场现有分散储能实现风电柔直并网直流故障穿越协调控制。首先,研究风电场接入多端柔性直流输电系统(multi-terminal HVDC based on MMC, MMC–MTDC)中MMC及风电场储能系统等主要组成部分的拓扑结构和基本工作原理;其次,针对大规模风电经柔直并网系统的直流故障,定量分析非故障极功率裕量,通过控制风电机组全功率变流器现有并联储能系统来消纳故障期间的不平衡功率;针对不同功率消纳方案,提出由储能系统、换流站、直流断路器和风电场协调配合进行故障穿越,根据直流断路器动作信号进行故障分类,改变换流站控制方式与风电场出力,从而实现不同故障类型的快速恢复。该策略能够保持系统在故障期间并网运行且不出现闭锁、过载等问题,提升系统的稳定性。最后,在PSCAD/EMTDC仿真平台搭建上述仿真模型,详细研究了风电场经MMC–MTDC并网系统的直流故障穿越策略,验证了本文所提出的基于储能系统的直流故障穿越策略能够维持故障期间的功率平衡,实现故障快速恢复,平稳实现直流故障穿越。本文所提故障穿越策略有望对新能源柔直并网提供必要的依据和参考。
文摘如何对直流故障电流进行有效抑制是实现柔性直流电网大规模发展的关键。为此,研究模块化多电平变换器(modular multilevel converter,MMC)的控制方法,提出一种针对半桥型MMC的两段式限流保护策略,通过减少子模块的投入数目来降低换流站直流出口电压,达到限制短路电流的目的。首先,介绍MMC的拓扑结构及基于MMC的高压直流输电(MMC based high voltage direct current,MMC-HVDC)系统控制策略;其次,分析两段式限流保护策略的原理与直流故障电流特性,介绍MMC-HVDC系统的直流故障保护策略;最后,通过双端MMC-HVDC系统仿真实验,对所提限流保护策略的有效性进行验证。仿真结果表明,两段式限流保护策略可以有效降低断路器开断电流和吸收能量,节约成本。