A finite element model for the supercavitating underwater vehicle was developed by employing 16-node shell elements of relative degrees of freedom.The nonlinear structural dynamic response was performed by introducing...A finite element model for the supercavitating underwater vehicle was developed by employing 16-node shell elements of relative degrees of freedom.The nonlinear structural dynamic response was performed by introducing the updated Lagrangian formulation.The numerical results indicate that there exists a critical thickness for the supercavitating plain shell for the considered velocity of the vehicle.The structure fails more easily because of instability with the thickness less than the critical value,while the structure maintains dynamic stability with the thickness greater than the critical value.As the velocity of the vehicle increases,the critical thickness for the plain shell increases accordingly.For the considered structural configuration,the critical thicknesses of plain shells are 5 and 7 mm for the velocities of 300 and 400 m/s,respectively.The structural stability is enhanced by using the stiffened configuration.With the shell configuration of nine ring stiffeners,the maximal displacement and von Mises stress of the supercavitating structure decrease by 25% and 17% for the velocity of 300 m/s,respectively.Compared with ring stiffeners,longitudinal stiffeners are more significant to improve structural dynamic performance and decrease the critical value of thickness of the shell for the supercavitating vehicle.展开更多
Discovery of effect of force adaptation in mechanics is presented. The discovery is based on use of the mobile closed mechanical contour for force transfer from the mechanism input link to an output link, According to...Discovery of effect of force adaptation in mechanics is presented. The discovery is based on use of the mobile closed mechanical contour for force transfer from the mechanism input link to an output link, According to discovery the motion transfer can be carried out by Assur structural group in the form of the mobile closed contour, and the output link is the link with one degree of freedom. The received mechanical system includes an input link, an output link and the closed contour placed between them as fourth class Assur structural group. The kinematic chain has two degrees of freedom. However the closed contour imposes an additional constraint on relative motion of its links. The carried out discovery allows providing the variable transfer ratio only due to the variable external load. Mechanical properties of the closed contour allow providing the required transfer ratio independently, smart and automatically.展开更多
文摘A finite element model for the supercavitating underwater vehicle was developed by employing 16-node shell elements of relative degrees of freedom.The nonlinear structural dynamic response was performed by introducing the updated Lagrangian formulation.The numerical results indicate that there exists a critical thickness for the supercavitating plain shell for the considered velocity of the vehicle.The structure fails more easily because of instability with the thickness less than the critical value,while the structure maintains dynamic stability with the thickness greater than the critical value.As the velocity of the vehicle increases,the critical thickness for the plain shell increases accordingly.For the considered structural configuration,the critical thicknesses of plain shells are 5 and 7 mm for the velocities of 300 and 400 m/s,respectively.The structural stability is enhanced by using the stiffened configuration.With the shell configuration of nine ring stiffeners,the maximal displacement and von Mises stress of the supercavitating structure decrease by 25% and 17% for the velocity of 300 m/s,respectively.Compared with ring stiffeners,longitudinal stiffeners are more significant to improve structural dynamic performance and decrease the critical value of thickness of the shell for the supercavitating vehicle.
文摘Discovery of effect of force adaptation in mechanics is presented. The discovery is based on use of the mobile closed mechanical contour for force transfer from the mechanism input link to an output link, According to discovery the motion transfer can be carried out by Assur structural group in the form of the mobile closed contour, and the output link is the link with one degree of freedom. The received mechanical system includes an input link, an output link and the closed contour placed between them as fourth class Assur structural group. The kinematic chain has two degrees of freedom. However the closed contour imposes an additional constraint on relative motion of its links. The carried out discovery allows providing the variable transfer ratio only due to the variable external load. Mechanical properties of the closed contour allow providing the required transfer ratio independently, smart and automatically.