A novel vacuum ice slurry producing system with jet-pumps was proposed to deal with the problems of high energy consumption and ice blockage.In this novel system,one steam driven by a jet-pump was used to create vacuu...A novel vacuum ice slurry producing system with jet-pumps was proposed to deal with the problems of high energy consumption and ice blockage.In this novel system,one steam driven by a jet-pump was used to create vacuum in a hermetic vessel where water was sprayed through a nozzle to produce ice slurry,while the other steam was used to provide enough cold energy to make the left vapor in the hermetic vessel condense.Mathematical models of this novel system were established and theoretical simulation on the performance characteristics was also implemented based on the MATLAB program.Results show that the novel system is feasible and practicable,and the system performance is affected by many factors,such as the temperature of the generators,condensing temperature,evaporation temperature,and the cooling load of the refrigerator sub-system.The findings are helpful to improve the performance of ice slurry producing system.展开更多
The production of environmental friendly emulsion paint is of great significance. Vacuum steam stripping of methyl isobutyl ketone (MIBK) and methyl ethyl ketone (MEK) from cathodic electrophoretic emulsion was st...The production of environmental friendly emulsion paint is of great significance. Vacuum steam stripping of methyl isobutyl ketone (MIBK) and methyl ethyl ketone (MEK) from cathodic electrophoretic emulsion was studied. The effects of mass ratio of vapor to feed (V/F), vacuum degree and feed temperature on removal rate of MIBK and MEK, emulsion size and solid volume fraction of the emulsion were investigated, and the removal of MIBK and MEK from cathodic electrophoretic emulsion by vacuum desorption was also studied. The results show that removal rates of both MIBK and MEK increase with the increase of V/F, vacuum degree and feed temperature. Removal rates of MIBK and MEK are 98.3% and 93.6%, respectively, at the operating condition V/F of 0.7, feed temperature of 27℃ and vacuum degree of 90 kPa. The emulsion size of cathodic electrophoretic emulsion increases slightly with feed temperature when temperature is below 42 ℃, and increases rapidly with feed temperature when temperature is above 42℃. Solid volume fraction increases by 10% as vacuum degree increases from 0 to 90 kPa at V/F of 0.7 and feed temperature of 27 ℃. Compared with vacuum desorption, vacuum steam stripping can get a higher removal rate of MIBK and MEK under the same feed flow, vacuum degree and feed temperature.展开更多
基金Project(51376198)supported by the National Natural Science Foundation of ChinaProject(11JJ22029)supported by the Hunan Provincial Natural Science Foundation of China
文摘A novel vacuum ice slurry producing system with jet-pumps was proposed to deal with the problems of high energy consumption and ice blockage.In this novel system,one steam driven by a jet-pump was used to create vacuum in a hermetic vessel where water was sprayed through a nozzle to produce ice slurry,while the other steam was used to provide enough cold energy to make the left vapor in the hermetic vessel condense.Mathematical models of this novel system were established and theoretical simulation on the performance characteristics was also implemented based on the MATLAB program.Results show that the novel system is feasible and practicable,and the system performance is affected by many factors,such as the temperature of the generators,condensing temperature,evaporation temperature,and the cooling load of the refrigerator sub-system.The findings are helpful to improve the performance of ice slurry producing system.
基金Project(21176264)supported by the National Natural Science Foundation of ChinaProject(ZL110414)supported by the Undergraduate Free Exploration Innovation Foundation of Central South University,China
文摘The production of environmental friendly emulsion paint is of great significance. Vacuum steam stripping of methyl isobutyl ketone (MIBK) and methyl ethyl ketone (MEK) from cathodic electrophoretic emulsion was studied. The effects of mass ratio of vapor to feed (V/F), vacuum degree and feed temperature on removal rate of MIBK and MEK, emulsion size and solid volume fraction of the emulsion were investigated, and the removal of MIBK and MEK from cathodic electrophoretic emulsion by vacuum desorption was also studied. The results show that removal rates of both MIBK and MEK increase with the increase of V/F, vacuum degree and feed temperature. Removal rates of MIBK and MEK are 98.3% and 93.6%, respectively, at the operating condition V/F of 0.7, feed temperature of 27℃ and vacuum degree of 90 kPa. The emulsion size of cathodic electrophoretic emulsion increases slightly with feed temperature when temperature is below 42 ℃, and increases rapidly with feed temperature when temperature is above 42℃. Solid volume fraction increases by 10% as vacuum degree increases from 0 to 90 kPa at V/F of 0.7 and feed temperature of 27 ℃. Compared with vacuum desorption, vacuum steam stripping can get a higher removal rate of MIBK and MEK under the same feed flow, vacuum degree and feed temperature.