为了解决序列推荐中的用户偏好漂移问题,以及更精确地捕捉用户动态偏好,提出了一种新型的序列推荐模型SILSSRec(side information and long-short term preferences based sequence recommendation)。该模型首先利用项目的类别和频次作...为了解决序列推荐中的用户偏好漂移问题,以及更精确地捕捉用户动态偏好,提出了一种新型的序列推荐模型SILSSRec(side information and long-short term preferences based sequence recommendation)。该模型首先利用项目的类别和频次作为辅助信息,基于用户的历史交互序列,生成个性化用户嵌入表示。然后,通过历史交互和当前交互之间的时间间隔生成个性化时间间隔嵌入,并将此嵌入与项目特征嵌入融合,形成个性化时间嵌入表示。模型采用注意力机制和门控循环网络,从嵌入表示中提取用户的长期和短期偏好。此外,通过对比学习强化偏好的特征表达,并使用自适应聚合网络动态融合这两种偏好,形成用户的最终偏好表示。在8个公开数据集上的实验结果表明,SILSSRec在评估指标上优于现有的基线模型,其中AUC(area under curve)平均提高了3.82%、召回率平均提高了7.2%、精确率平均提高了0.3%。实验证明SILSSRec在不同场景下均有较好表现,有效缓解了偏好漂移问题,提升了推荐效果。展开更多
针对现有序列推荐模型忽略了不同用户的个性化行为,导致模型不能充分捕获用户动态偏好而产生的兴趣漂移等问题,提出了一种基于用户长短期偏好的序列推荐模型(Sequential Recommendation Model Based on User’s Long and Short Term Pre...针对现有序列推荐模型忽略了不同用户的个性化行为,导致模型不能充分捕获用户动态偏好而产生的兴趣漂移等问题,提出了一种基于用户长短期偏好的序列推荐模型(Sequential Recommendation Model Based on User’s Long and Short Term Preference,ULSP-SRM)。首先,根据用户的序列中交互物品的类别和时间信息生成用户的动态类别嵌入,进而有效建立物品之间的关联性,并且降低数据的稀疏性;其次,根据用户当前点击物品和最后一项点击的时间间隔信息生成个性化时序位置嵌入矩阵,模拟用户的个性化聚集现象,以更好地反映用户偏好的动态变化;然后,将融合了个性化时序位置嵌入矩阵的用户长期偏好序列以会话为单位输入门控循环单元中,生成用户的长期偏好表示,并通过注意力机制将用户长短期偏好进行融合,生成用户的最终偏好表示,从而达到充分捕获用户偏好的目的;最后,将用户最终偏好表示输入推荐预测层进行下一项推荐预测。在Amazon公开数据集的7个子集上进行实验,采用AUC(Area Under Curve)值、召回率和精确率指标进行综合评估,实验结果表明,所提模型的表现优于其他先进基准模型,有效地提升了推荐性能。展开更多
文摘为了解决序列推荐中的用户偏好漂移问题,以及更精确地捕捉用户动态偏好,提出了一种新型的序列推荐模型SILSSRec(side information and long-short term preferences based sequence recommendation)。该模型首先利用项目的类别和频次作为辅助信息,基于用户的历史交互序列,生成个性化用户嵌入表示。然后,通过历史交互和当前交互之间的时间间隔生成个性化时间间隔嵌入,并将此嵌入与项目特征嵌入融合,形成个性化时间嵌入表示。模型采用注意力机制和门控循环网络,从嵌入表示中提取用户的长期和短期偏好。此外,通过对比学习强化偏好的特征表达,并使用自适应聚合网络动态融合这两种偏好,形成用户的最终偏好表示。在8个公开数据集上的实验结果表明,SILSSRec在评估指标上优于现有的基线模型,其中AUC(area under curve)平均提高了3.82%、召回率平均提高了7.2%、精确率平均提高了0.3%。实验证明SILSSRec在不同场景下均有较好表现,有效缓解了偏好漂移问题,提升了推荐效果。
文摘针对现有序列推荐模型忽略用户的长期偏好和短期偏好,导致推荐模型不能充分发挥作用,推荐效果不佳的问题,提出一种基于用户长短期偏好的个性化推荐模型.首先,针对长期偏好序列长且不连续的特点,采用BERT(bidirectional encoder representations from transformers)对长期偏好建模;针对短期偏好序列短且与用户交互的间隔时间较短,具有易变性,采用垂直水平卷积网络对短期偏好建模;在得到用户的长期偏好和短期偏好后,利用激活函数进行动态建模,然后利用门控循环网络对长短期偏好进行平衡.其次,针对用户在日常交互中的误碰行为,采用稀疏注意力网络进行建模,在对长短期偏好建模前使用稀疏注意力网络进行用户行为序列处理;用户特征偏好对推荐结果也会有影响,使用带有偏置编码的多头注意力机制对用户特征进行提取.最后,将各部分得到的结果输入到全连接层得到最后的输出结果.为验证本文模型的可行性,在数据集Yelp和MovieLens-1M上进行实验,实验结果表明该模型优于其他基线模型.
文摘针对现有序列推荐模型忽略了不同用户的个性化行为,导致模型不能充分捕获用户动态偏好而产生的兴趣漂移等问题,提出了一种基于用户长短期偏好的序列推荐模型(Sequential Recommendation Model Based on User’s Long and Short Term Preference,ULSP-SRM)。首先,根据用户的序列中交互物品的类别和时间信息生成用户的动态类别嵌入,进而有效建立物品之间的关联性,并且降低数据的稀疏性;其次,根据用户当前点击物品和最后一项点击的时间间隔信息生成个性化时序位置嵌入矩阵,模拟用户的个性化聚集现象,以更好地反映用户偏好的动态变化;然后,将融合了个性化时序位置嵌入矩阵的用户长期偏好序列以会话为单位输入门控循环单元中,生成用户的长期偏好表示,并通过注意力机制将用户长短期偏好进行融合,生成用户的最终偏好表示,从而达到充分捕获用户偏好的目的;最后,将用户最终偏好表示输入推荐预测层进行下一项推荐预测。在Amazon公开数据集的7个子集上进行实验,采用AUC(Area Under Curve)值、召回率和精确率指标进行综合评估,实验结果表明,所提模型的表现优于其他先进基准模型,有效地提升了推荐性能。