期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
固态电池石榴石电解质与锂金属界面改善的综述
1
作者 赵卫民 王淼 朱燕峰 《电池》 CAS 北大核心 2024年第4期574-577,共4页
固态电池因高比能量、高安全性和宽使用温度范围等优势,具有广阔的应用前景。石榴石固态电解质具有较高的离子电导率、较宽的电化学窗口以及对锂金属稳定等特点,是构筑全固态锂金属电池较有发展前景的固态电解质之一。石榴石固态电解质... 固态电池因高比能量、高安全性和宽使用温度范围等优势,具有广阔的应用前景。石榴石固态电解质具有较高的离子电导率、较宽的电化学窗口以及对锂金属稳定等特点,是构筑全固态锂金属电池较有发展前景的固态电解质之一。石榴石固态电解质与锂金属之间存在着接触不良、高界面阻抗等问题。对石榴石电解质/锂负极的界面特性及界面问题的成因进行分析,并总结电解质和锂金属表面处理以及引入界面层等调控策略,包括使用锂合金、去除电解质表面的污染物,以及使用原子层沉积、磁控溅射沉积、真空蒸镀等技术添加修饰层,为解决石榴石与锂负极的界面问题提供借鉴。 展开更多
关键词 固态电池 石榴石固态电解质 锂金属负极 锂枝晶 界面修饰 界面接触 表面处理
下载PDF
水溶液法原位构建ZnO亲锂层稳定锂-石榴石电解质界面 被引量:1
2
作者 蔡明俐 姚柳 +1 位作者 靳俊 温兆银 《物理化学学报》 SCIE CAS CSCD 北大核心 2021年第1期6-12,共7页
固态电池以其高安全性和高能量密度而备受关注。石榴石型固体电解质(LLZO)由于具有较高的离子导电性和对锂金属的稳定性,在固态电池中具有应用前景,但陶瓷与锂金属较差的界面接触会导致高的界面阻抗和可能形成的枝晶穿透。我们利用LLZO... 固态电池以其高安全性和高能量密度而备受关注。石榴石型固体电解质(LLZO)由于具有较高的离子导电性和对锂金属的稳定性,在固态电池中具有应用前景,但陶瓷与锂金属较差的界面接触会导致高的界面阻抗和可能形成的枝晶穿透。我们利用LLZO表层独特的H^(+)/Li^(+)交换反应,提出了一种简便有效的金属盐类水溶液诱发策略,在电解质表面原位构建ZnO亲锂层,界面处LiZn合金化实现紧密连续的接触。引入改性层后,界面阻抗可显著降低至约10Ω·cm^(2),对称电池能够在0.1mA·cm^(-2)的电流密度下实现长达1000h的长循环稳定性。匹配正极LiFePO_(4)(LFP)或LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2)(NCM523)的准固态电池在室温下能够稳定循环100次以上。 展开更多
关键词 石榴石电解质 Zn(NO3)2水溶液 原位修饰 界面稳定性 固态锂电池
下载PDF
纳米石榴石固体电解质粉体在聚合物电解质中的均匀分散 被引量:1
3
作者 吕寒梅 陈昕 +2 位作者 孙麒富 赵宁 郭向欣 《物理化学学报》 SCIE CAS CSCD 北大核心 2024年第3期46-47,共2页
固态锂电池(SSLBs)因采用金属锂负极和固体电解质,具有提高能量密度和安全性的潜质。固体电解质作为固态锂电池的关键材料,对电池性能有重要影响。其中,聚合物-石榴石型复合固态电解质因结合了聚合物电解质的易加工性以及石榴石电解质... 固态锂电池(SSLBs)因采用金属锂负极和固体电解质,具有提高能量密度和安全性的潜质。固体电解质作为固态锂电池的关键材料,对电池性能有重要影响。其中,聚合物-石榴石型复合固态电解质因结合了聚合物电解质的易加工性以及石榴石电解质的热稳定性和高离子电导率的优点,在固态电池规模化制造中具有良好的应用前景。然而,由于纳米固体电解质粉体的表面能高、与有机物的界面兼容性差,导致纳米锂镧锆氧颗粒在聚合物基体中容易发生团聚,进而导致复合电解质的离子电导率降低。本工作引入硅烷偶联剂3-缩水甘油氧基丙基三甲氧基硅烷(GPTMS)对Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO)的表面进行改性,旨在改善LLZTO颗粒在溶剂和聚合物基体中的分散性。LLZTO纳米颗粒表面的羟基与GPTMS分子反应形成共价键,在颗粒表面形成一层厚度约5 nm的GPTMS修饰层。GPTMS中具有亲脂性的环氧基团,使改性后的LLZTO纳米颗粒(LLZTO@GPTMS)在有机溶剂中均匀分散。粒度分布实验表明,LLZTO纳米颗粒的分散性与溶剂的极性呈正相关。采用均匀分散的LLZTO悬浮液,制备的PEO:LLZTO复合电解质的室温离子电导率可以达到2.31×10^(-4)S·cm^(-1)。使用优化后的PEO:LLZTO@GPTMS电解质组装的锂对称电池以及以LiFePO_(4)(LFP)为正极、金属锂为负极的SSLBs均表现出更长的循环寿命。此外,GPTMS的修饰有助于LLZTO纳米颗粒在聚乙烯(Polyethylene,PE)隔膜上的均匀涂覆。采用LLZTO@GPTMS涂覆PE隔膜的LFP|Li电池比采用未修饰LLZTO涂覆PE隔膜的电池展现出更优异的循环稳定性。结果表明,GPTMS能够有效提高LLZTO纳米颗粒在有机溶剂和聚合物基质中的分散性,对其他有机-无机复合材料体系具有指导意义。 展开更多
关键词 固态锂电池 石榴石电解质 复合固体电解质 硅烷偶联剂 纳米粉体分散
下载PDF
冷烧结工艺制备石榴石固态电解质及其性能 被引量:1
4
作者 张颖 杨迪 +1 位作者 张军战 刘安栋 《精细化工》 EI CAS CSCD 北大核心 2020年第9期1890-1895,共6页
以LiNO3、Al(NO3)3·9H2O、La(NO3)3·6H2O、Zr O(NO3)2·5H2O为原料,采用溶胶-凝胶法制备了Li5.95Al0.35La3Zr2O12粉体,随后加入聚乙烯醇(PVA)水溶液作为液相介质,通过冷烧结工艺制备了Li5.95Al0.35La3Zr2O12石榴石固态电... 以LiNO3、Al(NO3)3·9H2O、La(NO3)3·6H2O、Zr O(NO3)2·5H2O为原料,采用溶胶-凝胶法制备了Li5.95Al0.35La3Zr2O12粉体,随后加入聚乙烯醇(PVA)水溶液作为液相介质,通过冷烧结工艺制备了Li5.95Al0.35La3Zr2O12石榴石固态电解质。冷烧结工艺后采用后续热处理改善离子传导性能。采用质量体积法和电化学阻抗谱对Li5.95Al0.35La3Zr2O12石榴石固态电解质的体积密度和离子电导率进行了测试,采用XRD与SEM进行晶体结构与形貌表征。结果表明,冷烧结时间和压力对样品的晶体结构几乎没有影响。冷烧结时间过长会导致样品开裂,在15~30min时,冷烧结时间对样品的体积密度和离子电导率影响不大,在烧结时间较短的样品中发现了杂相。提高冷烧结压力可明显提高样品的体积密度和离子电导率,在200℃、510 MPa、30 min的冷烧结条件下可以获得具有较高离子电导率(2.66×10–6S/cm)的Li5.95Al0.35La3Zr2O12石榴石固态电解质,其晶界电阻较小。但继续增加冷烧结压力,导致热处理过程中第二相的分解和晶粒生长受到抑制,样品的体积密度和离子电导率反而下降。 展开更多
关键词 冷烧结工艺 石榴石固态电解质 离子电导率 热处理 体积密度 有机电化学与工业
原文传递
微量Al掺杂修饰金属锂与固态电解质界面的研究
5
作者 吴镝 付兴杰 +5 位作者 冯杰仪 张雯婷 王中正 吴毅强 刘争 范东华 《广州化工》 CAS 2024年第7期44-46,共3页
石榴石型固态电解质具有离子电导率高、机械强度高、电化学窗口宽等特性,但在较高电流密度下仍有金属锂枝晶问题。本文提出一种能提升金属锂与固态电解质界面稳定性的方法,在熔融Li中引入少量的Al,达到了提高固态电池的性能的目的。在... 石榴石型固态电解质具有离子电导率高、机械强度高、电化学窗口宽等特性,但在较高电流密度下仍有金属锂枝晶问题。本文提出一种能提升金属锂与固态电解质界面稳定性的方法,在熔融Li中引入少量的Al,达到了提高固态电池的性能的目的。在固定电流密度和固定30 min的电化学剥离沉积测试中,Li(Al)|LLZTOLi(Al)对称电池极限电流密度达到0.8 mA·cm^(-2),电压曲线在1.0 mA·cm^(-2)处才产生极化现象,在1.2 mA·cm^(-2)处失效。与现有研究对比,循环稳定性与倍率性能均有显著提升。 展开更多
关键词 石榴石型固态电解质 界面修饰 锂金属负极 锂镧锆钽氧(LLZTO)
下载PDF
石榴石型固态电解质/铝锂合金界面构筑及电化学性能 被引量:2
6
作者 马嘉林 王红春 +1 位作者 龚正良 杨勇 《电化学》 CAS CSCD 北大核心 2020年第2期262-269,共8页
本文通过在锂负极中熔入少量铝制备了一种含Al-Li合金(Al4Li9)的新型复合锂负极,可有效改善Garnet/金属锂界面润湿性,从而显著降低了界面阻抗.XRD研究结果表明这一复合锂负极由Al4Li9合金和金属锂两相复合而成.SEM研究表明,复合锂负极... 本文通过在锂负极中熔入少量铝制备了一种含Al-Li合金(Al4Li9)的新型复合锂负极,可有效改善Garnet/金属锂界面润湿性,从而显著降低了界面阻抗.XRD研究结果表明这一复合锂负极由Al4Li9合金和金属锂两相复合而成.SEM研究表明,复合锂负极可以有效改善金属锂与Garnet电解质的界面接触,形成更为紧密的接触界面.电化学测试表明,复合锂负极显著降低了金属锂与Garnet电解质的界面阻抗,界面阻抗由锂/Garnet电解质界面的740.6Ω·cm^2降低到复合锂负极/Garnet电解质界面的75.0Ω·cm^2.使用复合锂负极制备的对称电池在50μA·cm^-2和100μA·cm^-2电流密度锂沉积-溶出过程中表现出较低的极化和良好的循环稳定性,在50μA·cm^-2电流密度下,可以稳定循环超过400小时. 展开更多
关键词 石榴石型固体电解质 电极/固态电解质界面 铝锂合金
下载PDF
Ba、Ga共掺杂对石榴石型固态电解质Li7La3Zr2O12显微组织及电导率的影响 被引量:4
7
作者 董大彰 赵梦媛 +3 位作者 解昊 边凌峰 杨星 孟彬 《材料导报》 EI CAS CSCD 北大核心 2020年第4期1-6,共6页
采用固相法合成了Ba与Ga共掺杂的Li7La3Zr2O12(LLZO)石榴石型固态电解质粉末,再结合常压烧结制备了Ba、Ga共掺杂LLZO样品。采用X射线衍射、扫描电镜、能谱分析和交流阻抗法对样品的物相结构、微观形貌、成分分布及电导率进行了表征。结... 采用固相法合成了Ba与Ga共掺杂的Li7La3Zr2O12(LLZO)石榴石型固态电解质粉末,再结合常压烧结制备了Ba、Ga共掺杂LLZO样品。采用X射线衍射、扫描电镜、能谱分析和交流阻抗法对样品的物相结构、微观形貌、成分分布及电导率进行了表征。结果表明,在烧结温度1100℃下得到了立方相的LLZO固态电解质。当Ga的含量在LLZO化学式中为0.15,Ba掺杂量从0增加至0.15(Ga 0.15 Bax-Li 6.55+x La3-xZr2O 12,x=0~0.15)时,LLZO样品的平均晶粒尺寸从14μm下降到4μm,30℃时晶界电导率由1.54×10^-5 S·cm^-1提升到2.22×10^-4 S·cm^-1。Ba作为一种烧结剂,改善了材料的烧结性能,降低了材料的平均晶粒尺寸,使晶粒与晶粒连接得更紧密。Li 6.7 Ga0.15La2.85Ba0.15Zr2O12样品在30℃下的总电导率为2.11×10^-4 S·cm^-1,远高于单独掺杂Ga时Li6.55Ga0.15La3Zr2O12样品的总电导率(σ=1.40×10^-5 S·cm^-1),由此可见,Ba、Ga共掺杂极大地提高了LLZO的锂离子电导率。 展开更多
关键词 Li7La3Zr2O12 石榴石型固态电解质 元素掺杂 电导率
下载PDF
液体电解液改性石榴石型固体电解质与锂负极的界面
8
作者 池上森 姜益栋 +8 位作者 王庆荣 叶子威 余凯 马骏 靳俊 王军 王朝阳 温兆银 邓永红 《储能科学与技术》 CAS CSCD 北大核心 2021年第3期914-924,共11页
石榴石固体电解质型的固态锂金属电池因具有高能量密度、高安全性和长循环寿命等优点而受到了研究人员的重点关注,然而石榴石型电解质和锂负极之间存在巨大的界面阻抗,严重阻碍了电池的正常工作。针对该问题,本文主要在石榴石型固体电... 石榴石固体电解质型的固态锂金属电池因具有高能量密度、高安全性和长循环寿命等优点而受到了研究人员的重点关注,然而石榴石型电解质和锂负极之间存在巨大的界面阻抗,严重阻碍了电池的正常工作。针对该问题,本文主要在石榴石型固体电解质与锂负极之间的界面引入少量的电解液,减少石榴石型电解质与锂负极的界面阻抗,使得固态对称锂电池正常循环。进一步地采用扫描电子显微镜(SEM)、X射线能谱仪(EDS)、X射线光电子能谱(XPS)和电化学阻抗谱(EIS)研究了石榴石型电解质与锂负极之间界面层的形貌、成分、界面阻抗和循环稳定性。研究结果表明,液体电解液极大地降低了石榴型电解质与锂负极间的界面阻抗,在80℃情况下,石榴型电解质与锂负极循环前的面电阻为1.89Ω·cm^(2),循环后的面电阻为3.24Ω·cm^(2)。 展开更多
关键词 石榴石型固体电解质 锂负极 界面 电解 界面电阻
下载PDF
石榴石型Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)对Si/C负极表面固体电解质中间相的调控机制研究 被引量:2
9
作者 苏东良 崔锦 +1 位作者 翟朋博 郭向欣 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2022年第7期802-808,I0009-I0012,共11页
硅(Si)负极在充放电过程中巨大的体积变化会导致固态电解质中间相(SEI)破裂和硅颗粒粉化,进而造成容量快速衰减。本研究报道了一种利用Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO)固体电解质调节Si/C负极表面SEI成分的策略。将LLZTO... 硅(Si)负极在充放电过程中巨大的体积变化会导致固态电解质中间相(SEI)破裂和硅颗粒粉化,进而造成容量快速衰减。本研究报道了一种利用Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO)固体电解质调节Si/C负极表面SEI成分的策略。将LLZTO层均匀地涂覆在商用化聚丙烯(PP)隔膜表面,不仅提高了电解液对隔膜的润湿性,均匀化锂离子通量,并且增大了SEI中无机组分的比例,从而增强Si/C负极的界面稳定性。得益于上述优势,使用LLZTO修饰的PP隔膜所组装的锂离子电池表现出更为优异的循环稳定性和倍率性能。Li-Si/C半电池的可逆容量为876 mAh·g^(–1),在0.3C(1C=1.5 A·g^(–1))的倍率下,200次循环的容量保持率为81%;而LFP-Si/C全电池的比容量为125 mAh·g^(–1),在0.3C(1C=170mA·g^(–1))的倍率下循环100次后容量保持率为91.8%。该工作中LLZTO固体电解质调节了Si/C负极表面SEI成分,为开发高性能硅基锂离子电池提供了新思路。 展开更多
关键词 固体电解质中间相 成分调控 石榴石型固体电解质 Si/C负极 锂离子电池
下载PDF
湿化学法制备石榴石型固态电解质Li_(7)La_(3)Zr_(2)O_(12) 被引量:2
10
作者 潘迪 孔江榕 +2 位作者 刘欣楠 黄美琪 周涛 《化工进展》 EI CAS CSCD 北大核心 2021年第S02期334-339,共6页
锂电池因能量密度高、循环寿命长、绿色清洁等特点被广泛应用,但其液态电解质易泄漏、挥发,且隔膜易被锂枝晶刺穿造成短路,引发危险。固态电解质大多是不具燃烧性的无机材料,室温下离子电导率较高、电化学窗口宽且适用温度范围广。因此... 锂电池因能量密度高、循环寿命长、绿色清洁等特点被广泛应用,但其液态电解质易泄漏、挥发,且隔膜易被锂枝晶刺穿造成短路,引发危险。固态电解质大多是不具燃烧性的无机材料,室温下离子电导率较高、电化学窗口宽且适用温度范围广。因此,采用固态电解质替代液态电解质具有十分重要的意义。相对于其他类型固态电解质,石榴石型氧化物Li_(7)La_(3)Zr_(2)O_(12)(LLZO)具有离子电导率高、电化学窗口宽(>5V vs.Li/Li^(+))、对锂稳定性好和热稳定性高等特点,是非常具有发展潜力的无机固态电解质。本文采用溶胶-凝胶法和低温燃烧法两种湿化学法合成LLZO粉末,对应的电解质片在40℃时的离子电导率分别为1.22×10^(-5)S/cm和3.87×10^(-6)S/cm,活化能分别为0.34eV和0.32eV。从实验结果综合比较,溶胶-凝胶法为最佳制备方法。 展开更多
关键词 石榴石型LLZO电解质 溶胶-凝胶法 低温燃烧法
下载PDF
氧化石墨烯辅助低温液相法合成石榴石型固体电解质
11
作者 邓帆 宋树丰 +1 位作者 姚建尧 胡宁 《上海航天(中英文)》 CSCD 2020年第2期38-45,87,共9页
固态锂电池有望解决传统锂离子电池的安全性问题,并且能实现更高能量密度。作为具有应用前景的石榴石型固体电解质材料,其纳米粉体的制备技术研究具有重要意义。针对石榴石型固体电解质纳米粉体存在合成温度高、粉体团聚、粉体颗粒尺寸... 固态锂电池有望解决传统锂离子电池的安全性问题,并且能实现更高能量密度。作为具有应用前景的石榴石型固体电解质材料,其纳米粉体的制备技术研究具有重要意义。针对石榴石型固体电解质纳米粉体存在合成温度高、粉体团聚、粉体颗粒尺寸大等关键问题,提出了一种氧化石墨烯辅助的低温液相法合成石榴石型固体电解质的技术策略。该策略的主要思想是首先利用氧化石墨烯表面带有负电荷的特性,吸附石榴石金属阳离子,避免多分散聚集体的形成;然后再利用氧化石墨烯纳米片的物理分隔,在低温合成条件下,实现分散性较好的石榴石型固体电解质纳米粉体的制备。实验中,以氧化石墨烯作为模板材料,结合化学共沉淀方法,制备了石榴石型锂离子固体电解质材料。系统研究了煅烧温度、氧化石墨烯含量、煅烧气氛等对石榴石型固体电解质制备的影响。实验结果表明:当氧化石墨烯的最佳添加量为1%时,可以在较低温度(650℃)下获得单一石榴石立方相的固体电解质材料Li6.5Mg0.05La3Zr1.6Ta0.4O12。继而对比研究了添加1%氧化石墨烯与未添加氧化石墨烯对石榴石型固体电解质纳米粉体形貌及尺寸的影响,揭示了氧化石墨烯纳米片在石榴石型固体电解质纳米粉体制备中的积极作用。固体电解质烧结片的室温离子电导率约为2.5×10-4S·cm-1,为其在固态锂电池中的应用打下了基础。 展开更多
关键词 石榴石型固体电解质 氧化石墨烯 化学共沉淀法 纳米粉体 固态锂电池
下载PDF
石榴石固体电解质Li_(3)BO_(3)界面改性研究
12
作者 陈规伟 龚正良 《电化学》 CAS CSCD 北大核心 2021年第1期76-82,共7页
石榴石固体电解质由于其高的离子电导率,对锂金属稳定等优点成为了下一代高性能锂电池的重要研究方向之一。但锂金属负极界面浸润性与锂枝晶问题限制了其应用。本文通过简单的液相沉积结合高温烧结的方法,在石榴石固体电解质片表面构建... 石榴石固体电解质由于其高的离子电导率,对锂金属稳定等优点成为了下一代高性能锂电池的重要研究方向之一。但锂金属负极界面浸润性与锂枝晶问题限制了其应用。本文通过简单的液相沉积结合高温烧结的方法,在石榴石固体电解质片表面构建了一层稳定的硼酸三锂(Li_(3)BO_(3))修饰层。研究表明,Li_(3)BO_(3)修饰层可以有效改善石榴石固体电解质与锂金属负极界面接触,促进锂的均匀沉积/溶出,从而抑制锂枝晶生长,提高界面稳定性。Li_(3)BO_(3)修饰后石榴石电解质片与锂金属之间紧密结合,Li/石榴石界面阻抗由修饰前的1780Ω·cm2降低至58Ω·cm^(2)。得益于界面接触的改善,Li_(3)BO_(3)修饰后的LLZTO电解质组装的对称电池可以在0.1 m·cm^(-2)的电流密度下稳定工作超过700 h。而未修饰的对称电池在0.05 m A·cm^(-2)的电流密度下短时间工作即出现微短路现象。 展开更多
关键词 石榴石固体电解质 硼酸三锂修饰层 界面改性 锂金属负极 界面浸润性
下载PDF
掺杂(Al3+,Ga3+)对石榴石型电解质Li7?xLa3Zr2?xTaxO12锂离子电导率的影响
13
作者 马丹祥 《材料科学》 2017年第3期243-253,共11页
为了提高Li7?xLa3Zr2?xTaxO12(LLZTO)固体电解质电导率,本文研究了Al3+和Ga3+掺杂对材料性能的影响。结果表明,掺杂Al3+和Ga3+,显著提高了材料的致密度和电导率。Al-Li7?xLa3Zr2?xTaxO12(Al-LLZTO)中的铝离子同时存在于晶粒和晶界中,晶... 为了提高Li7?xLa3Zr2?xTaxO12(LLZTO)固体电解质电导率,本文研究了Al3+和Ga3+掺杂对材料性能的影响。结果表明,掺杂Al3+和Ga3+,显著提高了材料的致密度和电导率。Al-Li7?xLa3Zr2?xTaxO12(Al-LLZTO)中的铝离子同时存在于晶粒和晶界中,晶界中的铝含量是晶粒中的两倍,Al-Li6.4La3Zr1.4Ta0.6O12拥有最高的总电导率0.54 mS/cm,其激活能为0.42 eV。Li7?x?3yGayLa3Zr2?xTaxO12(Ga-LLZTO)中,铝的含量较低,镓离子同时存在于电解质的晶粒与晶界中。在锂含量相同的样品中,Ga-LLZTO的总电导率要高于Al-LLZTO,表明Ga的掺杂比Al的掺杂对LLZTO电解质的电导率提升更大。最终,我们得到总电导率最高的样品Li6.4Ga0.1La3Zr1.7Ta0.3O12,其总电导率和激活能分别为0.87 mS/cm和0.33 eV。 展开更多
关键词 固态电解质 石榴石电解质LLZTO 离子电导率 Al和Ga掺杂
下载PDF
基于固态电解质的熔融碱金属电池研究进展 被引量:1
14
作者 王匡宇 刘凯 伍晖 《物理化学学报》 SCIE CAS CSCD 北大核心 2023年第12期1-14,共14页
电池技术的发展对于可再生能源的应用非常重要。近年来基于固态电解质的熔融碱金属电池展现出应用于大规模储能系统的潜力。本文介绍基于beta-Al_(2)O_(3)和NASICON电解质的熔融钠电池(SELS电池)和基于石榴石型电解质的熔融锂电池(SELL... 电池技术的发展对于可再生能源的应用非常重要。近年来基于固态电解质的熔融碱金属电池展现出应用于大规模储能系统的潜力。本文介绍基于beta-Al_(2)O_(3)和NASICON电解质的熔融钠电池(SELS电池)和基于石榴石型电解质的熔融锂电池(SELL电池)。固态电解质的结构和成分会显著影响其电导率和稳定性。因此,固态电解质的新型制备方法、掺杂技术以及表面改性技术是该领域的研究重点。截至目前,铅合金、金属氯化物、硫、硒和碘等材料已被证明可以作为SELS和SELL电池的正极,相应的电池体系具有不同的电化学性能、材料成本以及应用场景。本文对它们进行系统的归纳与比较。值得注意的是,SELS电池已经实现数百兆瓦时规模的储能系统应用,而SELL电池的技术成熟度仍然较低。但是,具有高能量密度、低运行温度以及制造成本的SELL电池具有良好的应用前景。同时,这两种电池的许多研究进展和技术成果可以共享,从而促进该领域的迅速发展。 展开更多
关键词 高温电池 固态电解质 电网储能 beta-氧化铝电解质 NASICON电解质 石榴石电解质
下载PDF
电子导电剂对石榴石基固态锂电池循环性能的影响(英文) 被引量:4
15
作者 杜付明 赵宁 +3 位作者 方锐 崔忠慧 李忆秋 郭向欣 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2018年第4期462-468,共7页
基于石榴石固体电解质的固态锂电池面临着固体电解质和固体电极之间较大的界面阻抗问题,导致循环性能不佳。为了解决此问题,本课题组制备并研究了LiNi_(1/3)Co_(1/3)Mn_(1/3)O)2基正极、Li_(6.4)La_3Zr_(1.4)Ta_(0.6)O_(12)陶瓷固体电... 基于石榴石固体电解质的固态锂电池面临着固体电解质和固体电极之间较大的界面阻抗问题,导致循环性能不佳。为了解决此问题,本课题组制备并研究了LiNi_(1/3)Co_(1/3)Mn_(1/3)O)2基正极、Li_(6.4)La_3Zr_(1.4)Ta_(0.6)O_(12)陶瓷固体电解质和金属锂负极构成的固态锂电池。在构筑LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2基正极时采用三种不同的导电碳,研究表明,与科琴黑和超导炭黑相比,使用气相生长碳纤维(Vapor Grown Carbon Fiber,VGCF)时,固态电池有更优异的循环性能。这是因为充电到高电压时,VGCF比另外两种导电剂引起的副反应更少,从而减少能增加电池内阻的碳酸盐类副产物的形成。这些结果说明电子导电剂的稳定性对固态锂电池的循环性能有重要影响。 展开更多
关键词 固态锂电池 界面阻抗 石榴石电解质 锂负极 复合正极
下载PDF
石榴石型Li_(7)La_(3)Zr_(2)O_(12)固态锂金属电池的界面问题研究进展 被引量:4
16
作者 张赛赛 赵海雷 《储能科学与技术》 CAS CSCD 北大核心 2021年第3期863-871,共9页
固态锂金属电池具有高能量密度、高安全性、宽工作温度范围、长服役寿命等优势,是下一代锂电池体系的重要发展方向之一。作为典型的氧化物固态电解质,Li_(7)La_(3)Zr_(2)O_(12)(LLZO)具有锂离子电导率高、电化学窗口较宽、机械强度高和... 固态锂金属电池具有高能量密度、高安全性、宽工作温度范围、长服役寿命等优势,是下一代锂电池体系的重要发展方向之一。作为典型的氧化物固态电解质,Li_(7)La_(3)Zr_(2)O_(12)(LLZO)具有锂离子电导率高、电化学窗口较宽、机械强度高和热稳定性好等优点,因此LLZO固态锂金属电池受到业界的广泛关注。但是,LLZO固态锂金属电池还存在锂枝晶穿透固态电解质生长造成电池短路、电解质/电极界面电阻过高等问题,影响其实际应用。这些问题与LLZO的显微结构特征、正极材料与LLZO的化学和电化学相容性、正极与电解质的界面结合性、金属锂负极对LLZO的浸润性等因素有关。本文总结了以上问题的解决策略。对于正极侧,通过活性颗粒表面包覆、三维固态电解质界面构筑、柔性聚合物或凝胶电解质中间层引入、正极活性颗粒与柔性或黏性离子传导材料复合等手段,可改善正极与LLZO的相容性,并降低正极界面电阻。对于负极界面,消除LLZO电解质表面碳酸锂、引入反应活性或柔性中间层、调控金属锂负极组成等方法,可改善锂对LLZO的浸润性,降低负极界面电阻。最后,本文对未来研究和发展方向给出了建议。 展开更多
关键词 Li_(7)La_(3)Zr_(2)O_(12) 石榴石型固态电解质 固态电池 电化学窗口 界面
下载PDF
石榴石型固态锂电池中的物理问题 被引量:4
17
作者 赵宁 穆爽 郭向欣 《物理学报》 SCIE EI CAS CSCD 北大核心 2020年第22期181-198,共18页
采用固体电解质的固态锂电池具有实现高能量密度和高安全性的潜力,在新能源汽车和可穿戴电子设备领域的应用大有可为.石榴石型Li_7La_3Zr_2O_(12)(LLZO)固体电解质具有高离子电导率和对锂稳定等特点,是当下最受人瞩目的固体电解质材料之... 采用固体电解质的固态锂电池具有实现高能量密度和高安全性的潜力,在新能源汽车和可穿戴电子设备领域的应用大有可为.石榴石型Li_7La_3Zr_2O_(12)(LLZO)固体电解质具有高离子电导率和对锂稳定等特点,是当下最受人瞩目的固体电解质材料之一.本文从物理的角度,探讨热力学和动力学两种因素对LLZO电化学稳定性的影响,离子界面输运机理及其在陶瓷和复合电解质中的应用.针对固态锂电池突出的界面问题,从界面匹配、电荷转移、体积应变、热量传递等方面,讨论固态锂电池循环寿命和实际安全性,给出构建理想界面的关键因素.最后,从电极、电解质和电池结构设计等方面分析如何构建高能量密度的固态锂电池电芯.本文希望通过对LLZO最新理论和实验研究成果的分析总结,阐明石榴石型固态锂电池中的关键物理问题,为高性能固态锂电池的发展提供依据. 展开更多
关键词 固态电池 石榴石型固体电解质 电解质/电极界面 固态电芯设计
下载PDF
不同尺寸Li_(6.4)La_(3)Zr_(2)Ga_(0.2)O_(12)颗粒与PEO复合制备高性能柔性固态电解质
18
作者 卢名亮 吕义玮 +3 位作者 刘志亮 李栋 李小成 闵志宇 《中国稀土学报》 EI CAS CSCD 北大核心 2024年第4期742-751,I0004,共11页
固体聚合物电解质具有良好的灵活性、低界面阻抗、易加工等特点,具有广阔的应用前景。目前,聚合物电解质存在着室温下离子输运困难和离子电导率低的问题。采用溶液铸造法制备了石榴石Li_(6.4)La_(3)Zr_(2)Ga_(0.2)O_(12)(LLZGO)/聚乙烯... 固体聚合物电解质具有良好的灵活性、低界面阻抗、易加工等特点,具有广阔的应用前景。目前,聚合物电解质存在着室温下离子输运困难和离子电导率低的问题。采用溶液铸造法制备了石榴石Li_(6.4)La_(3)Zr_(2)Ga_(0.2)O_(12)(LLZGO)/聚乙烯氧化物(PEO)复合聚合物电解质。通过优化LLZGO粒径,并与PEO结合,制备了高离子电导率的复合电解质。结果表明,当LLZGO粒径为0.5μm时,室温离子电导率为1.5×10^(-4)S·cm^(-1),制备的复合电解质的离子迁移数为0.343,在锂沉积/剥离试验中可稳定循环400 h。在60℃,2.7~4.0 V条件下,组装的Li/复合电解质/LiFePO_(4)电池首次放电比容量为141 mAh·g^(-1),在0.5 C倍率下,循环60次后放电比容量为121.4 mAh·g^(-1),具有良好的循环稳定性。通过优化LLZGO粒径,为提高复合电解质的界面性能、优化机械和电化学性能、开发高性能固体锂金属电池提供了一种可行的方法。 展开更多
关键词 复合电解质 全固态电池 石榴石电解质 离子电导率 稀土
原文传递
固态电池无机固态电解质/电极界面的研究进展 被引量:13
19
作者 郑碧珠 王红春 +2 位作者 马嘉林 龚正良 杨勇 《中国科学:化学》 CAS CSCD 北大核心 2017年第5期579-593,共15页
全固态锂电池有望较好地提高电池安全性并实现高的能量密度,因此已成为二次锂电池发展的一个重要方向.发展具有高锂离子电导率、低电解质/电极界面阻抗及有较好应变性的固态电解质材料是全固态电池研究的重要研究课题.如何有效构筑电解... 全固态锂电池有望较好地提高电池安全性并实现高的能量密度,因此已成为二次锂电池发展的一个重要方向.发展具有高锂离子电导率、低电解质/电极界面阻抗及有较好应变性的固态电解质材料是全固态电池研究的重要研究课题.如何有效构筑电解质/电极界面,提高界面稳定性并显著降低界面阻抗又是其中的难点之一.本文综述了近年来国际上比较关注的两种无机固体电解质——硫化物与石榴石(garnet)型氧化物的最新研究进展,重点对这两类固体电解质与正负极材料的界面特性进行总结与评述. 展开更多
关键词 全固态锂电池 固态电解质 电解质/电极界面 硫化物电解质 石榴石型氧化物电解质
原文传递
石榴石型全固态锂离子电池复合正极研究进展 被引量:4
20
作者 郭现伟 郝良威 +2 位作者 王永涛 孙芙蓉 尉海军 《硅酸盐学报》 EI CAS CSCD 北大核心 2019年第10期1423-1433,共11页
全固态锂离子电池具有高能量密度、长循环寿命和高安全性等优点,是当前的研究热点。固态电解质是全固态电池的核心组件,石榴石型固态电解质被认为是体型全固态锂离子电池理想的电解质材料。基于石榴石固态电解质构筑复合正极,解决固态... 全固态锂离子电池具有高能量密度、长循环寿命和高安全性等优点,是当前的研究热点。固态电解质是全固态电池的核心组件,石榴石型固态电解质被认为是体型全固态锂离子电池理想的电解质材料。基于石榴石固态电解质构筑复合正极,解决固态电解质与正极材料、电解质层与复合正极层的固–固界面问题,是提高电池性能的关键。详述了石榴石电解质基复合正极构筑以及与电解质间界面修饰的研究进展,并展望了石榴石型全固态锂离子电池的复合正极构筑及界面修饰的发展方向。 展开更多
关键词 石榴石型固态电解质 全固态锂离子电池 复合正极 界面修饰
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部