The mathematical physics model of mine methane and coal dust explosion propagation was established in the research,by using continuous phase,combustion,par- ticulate equations of mathematical physics.Based upon the da...The mathematical physics model of mine methane and coal dust explosion propagation was established in the research,by using continuous phase,combustion,par- ticulate equations of mathematical physics.Based upon the data from mine methane drainage roadway explosion,and mine methane and coal dust explosion propagation ex- perimental studies,the numerical emulator system of mine methane and coal dust explo- sion software was developed by using prevalent flow simulation platform,which can be used to simulate the explosion accidents process effectively.In addition,the system can also be used to determine whether coal dust involved in the explosion,and to simulate accurately the transition from deflagration to detonation in methane explosion,propagation velocity of explosion shock,attenuation pattern,and affected area of explosion.展开更多
Preventing the propagation of methane or coal dust explosions through the use of active explosion-suppression systems remains one of the most underutilised explosion controls in underground coal mines. As part of the ...Preventing the propagation of methane or coal dust explosions through the use of active explosion-suppression systems remains one of the most underutilised explosion controls in underground coal mines. As part of the effort to develop better technologies to safeguard mines, the use of active barrier systems was investigated at Kloppersbos in South Africa. The system is designed to meet the requirements of the European Standard (EN 14591-4 2007) as well as the Mine Safety Standardisation in the Ministry of Coal Industry, Coal Industrial 1 Standard of the Peoples Republic of China (MT 694-1997). From the tests conducted, it can be concluded that the ExploSpot System was successful in stopping flame propagation for both methane and methane and coal dust hybrid explosions when ammonium phosphate powder was used as the suppression material. The use of this barrier will provide coal mine management with an additional explosion control close to the point of ignition and may find application within longwall faces further protecting mines against the risk of an explosion propagating throughout a mine.展开更多
文摘The mathematical physics model of mine methane and coal dust explosion propagation was established in the research,by using continuous phase,combustion,par- ticulate equations of mathematical physics.Based upon the data from mine methane drainage roadway explosion,and mine methane and coal dust explosion propagation ex- perimental studies,the numerical emulator system of mine methane and coal dust explo- sion software was developed by using prevalent flow simulation platform,which can be used to simulate the explosion accidents process effectively.In addition,the system can also be used to determine whether coal dust involved in the explosion,and to simulate accurately the transition from deflagration to detonation in methane explosion,propagation velocity of explosion shock,attenuation pattern,and affected area of explosion.
文摘Preventing the propagation of methane or coal dust explosions through the use of active explosion-suppression systems remains one of the most underutilised explosion controls in underground coal mines. As part of the effort to develop better technologies to safeguard mines, the use of active barrier systems was investigated at Kloppersbos in South Africa. The system is designed to meet the requirements of the European Standard (EN 14591-4 2007) as well as the Mine Safety Standardisation in the Ministry of Coal Industry, Coal Industrial 1 Standard of the Peoples Republic of China (MT 694-1997). From the tests conducted, it can be concluded that the ExploSpot System was successful in stopping flame propagation for both methane and methane and coal dust hybrid explosions when ammonium phosphate powder was used as the suppression material. The use of this barrier will provide coal mine management with an additional explosion control close to the point of ignition and may find application within longwall faces further protecting mines against the risk of an explosion propagating throughout a mine.