To achieve high quality factor and high-sensitivity refractive index sensor,a slot micro-ring resonator(MRR)based on asymmetric Fabry-Perot(FP)cavity was proposed.The structure consisted of a pair of elliptical holes ...To achieve high quality factor and high-sensitivity refractive index sensor,a slot micro-ring resonator(MRR)based on asymmetric Fabry-Perot(FP)cavity was proposed.The structure consisted of a pair of elliptical holes to form an FP cavity and a microring resonator.The two different optical modes generated by the micro-ring resonator were destructively interfered to form a Fano line shape,which improved the system sensitivity while obtaining a higher quality factor and extinction ratio.The transmission principle of the structure was analyzed by the transfer matrix method.The transmission spectrum and mode field distribution of the proposed structure were simulated by the finite difference time domain(FDTD)method,and the key structural parameters affecting the Fano line shape in the device were optimized.The simulation results show that the quality factor of the device reached 22037.1,and the extinction ratio was 23.9 dB.By analyzing the refractive index sensing characteristics,the sensitivity of the structure was 354 nm·RIU−1,and the detection limit of the sensitivity was 2×10−4 RIU.Thus,the proposed compact asymmetric FP cavity slot micro-ring resonator has obvious advantages in sensing applications owing to its excellent performance.展开更多
Silicon carbide (SiC) is an excellent microelectronic material used to fabricate high frequency, high temperature,high power and non-volatile memory devices.But due to its indirect band gap,SiC based LED cant emit lig...Silicon carbide (SiC) is an excellent microelectronic material used to fabricate high frequency, high temperature,high power and non-volatile memory devices.But due to its indirect band gap,SiC based LED cant emit light so efficiently as GaN based LED, so people are eager to seek effective means to improve its luminescence efficiency. Amorphous SiC, porous crystalline SiC, nanometer SiC produced by CVD methods and porous SiC formed by ion implantation are investigated, and great progresses have been gained during the latest few years,which make SiC a promising material for developing OEIC.展开更多
The temperature dependence of characteristics for multimode interference(MMI) based 3-dB coupler in silicon-on-insulator is analyzed, which originates from the relatively high thermo-optic coefficient of silicon. For ...The temperature dependence of characteristics for multimode interference(MMI) based 3-dB coupler in silicon-on-insulator is analyzed, which originates from the relatively high thermo-optic coefficient of silicon. For restricted interference 3-dB MMI coupler, the output power uniformity is ideally 0 at room temperature and becomes 0.32 dB when temperature rises up to 550 K.For symmetric interference 3-dB MMI coupler, the power uniformity keeps ideally 0 due to its intrinsic symmetric interference mechanism. With the temperature rising, the excess loss of the both devices increases. The performance deterioration due to temperature variety is more obvious to restricted interference MMI 3-dB coupler, comparing with that of symmetric interference MMI 3-dB coupler.展开更多
During the ultra large scale integration (ULSI) process, the surface roughness of the polished silicon wafer plays an important role in the quality and rate of production of devices. In this work, the effects of oxi...During the ultra large scale integration (ULSI) process, the surface roughness of the polished silicon wafer plays an important role in the quality and rate of production of devices. In this work, the effects of oxidizer, surfactant, polyurethane pad and slurry additives on the surface roughness and topography of chemical-mechanical planarization (CMP) for silicon have been investigated. A standard atomic force microscopy (AFM) test method for the atomic scale smooth surface was proposed and used to measure the polished silicon surfaces. Finally, compared with the theoretical calculated Ra value of 0.0276 rim, a near-perfect silicon surface with the surface roughness at an atomic scale (0.5 4) was achieved based on an optimized CMP process.展开更多
基金supported by Natural Science Foundation of Gansu Province(No.22JR5RA320).
文摘To achieve high quality factor and high-sensitivity refractive index sensor,a slot micro-ring resonator(MRR)based on asymmetric Fabry-Perot(FP)cavity was proposed.The structure consisted of a pair of elliptical holes to form an FP cavity and a microring resonator.The two different optical modes generated by the micro-ring resonator were destructively interfered to form a Fano line shape,which improved the system sensitivity while obtaining a higher quality factor and extinction ratio.The transmission principle of the structure was analyzed by the transfer matrix method.The transmission spectrum and mode field distribution of the proposed structure were simulated by the finite difference time domain(FDTD)method,and the key structural parameters affecting the Fano line shape in the device were optimized.The simulation results show that the quality factor of the device reached 22037.1,and the extinction ratio was 23.9 dB.By analyzing the refractive index sensing characteristics,the sensitivity of the structure was 354 nm·RIU−1,and the detection limit of the sensitivity was 2×10−4 RIU.Thus,the proposed compact asymmetric FP cavity slot micro-ring resonator has obvious advantages in sensing applications owing to its excellent performance.
文摘Silicon carbide (SiC) is an excellent microelectronic material used to fabricate high frequency, high temperature,high power and non-volatile memory devices.But due to its indirect band gap,SiC based LED cant emit light so efficiently as GaN based LED, so people are eager to seek effective means to improve its luminescence efficiency. Amorphous SiC, porous crystalline SiC, nanometer SiC produced by CVD methods and porous SiC formed by ion implantation are investigated, and great progresses have been gained during the latest few years,which make SiC a promising material for developing OEIC.
文摘The temperature dependence of characteristics for multimode interference(MMI) based 3-dB coupler in silicon-on-insulator is analyzed, which originates from the relatively high thermo-optic coefficient of silicon. For restricted interference 3-dB MMI coupler, the output power uniformity is ideally 0 at room temperature and becomes 0.32 dB when temperature rises up to 550 K.For symmetric interference 3-dB MMI coupler, the power uniformity keeps ideally 0 due to its intrinsic symmetric interference mechanism. With the temperature rising, the excess loss of the both devices increases. The performance deterioration due to temperature variety is more obvious to restricted interference MMI 3-dB coupler, comparing with that of symmetric interference MMI 3-dB coupler.
基金supported by the Science Fund for Creative Research Groups(Grant No.51021064)the National Natural Science Foundation of China(Grant No.51205226)
文摘During the ultra large scale integration (ULSI) process, the surface roughness of the polished silicon wafer plays an important role in the quality and rate of production of devices. In this work, the effects of oxidizer, surfactant, polyurethane pad and slurry additives on the surface roughness and topography of chemical-mechanical planarization (CMP) for silicon have been investigated. A standard atomic force microscopy (AFM) test method for the atomic scale smooth surface was proposed and used to measure the polished silicon surfaces. Finally, compared with the theoretical calculated Ra value of 0.0276 rim, a near-perfect silicon surface with the surface roughness at an atomic scale (0.5 4) was achieved based on an optimized CMP process.