随着自由曲面光学元件加工需求日益增长,能短周期高柔性智能化成线的超精密磨削、抛光设备及工艺成为光学元件批量生产的关键。传统超精密磨削机床设计周期长、制造及投入成本高,难以满足中小批量定制的多样化市场应用。基于大工作空间...随着自由曲面光学元件加工需求日益增长,能短周期高柔性智能化成线的超精密磨削、抛光设备及工艺成为光学元件批量生产的关键。传统超精密磨削机床设计周期长、制造及投入成本高,难以满足中小批量定制的多样化市场应用。基于大工作空间、低成本且智能化、柔性化的六轴工业机器人,提出了机器人主动柔顺力控磨削方法,探究机器人力控磨削作业的运动控制,研究力控法兰特性从而掌握力控控制策略;基于力控磨削工艺实验求解建立稳定磨削力模型,实现通过控制力控期望力来实现机器人恒定磨削深度,粗磨阶段有效提升工件面形质量,相较于机器人无力控磨削,机器人力控磨削峰谷值(peak-to-valley,PV)提升了57.8%,均方根值(root mean square,RMS)提升了63.5%。展开更多
文摘随着自由曲面光学元件加工需求日益增长,能短周期高柔性智能化成线的超精密磨削、抛光设备及工艺成为光学元件批量生产的关键。传统超精密磨削机床设计周期长、制造及投入成本高,难以满足中小批量定制的多样化市场应用。基于大工作空间、低成本且智能化、柔性化的六轴工业机器人,提出了机器人主动柔顺力控磨削方法,探究机器人力控磨削作业的运动控制,研究力控法兰特性从而掌握力控控制策略;基于力控磨削工艺实验求解建立稳定磨削力模型,实现通过控制力控期望力来实现机器人恒定磨削深度,粗磨阶段有效提升工件面形质量,相较于机器人无力控磨削,机器人力控磨削峰谷值(peak-to-valley,PV)提升了57.8%,均方根值(root mean square,RMS)提升了63.5%。