已有的社会化协同排序推荐算法的研究只是简单地融入用户的社交网络信息,没有考虑用户之间社会化信任网络的传递性;同时,该推荐算法的性能面临数据高度稀疏性问题的挑战.为了进一步解决这些问题,在传统的协同排序推荐算法(ListRank,List...已有的社会化协同排序推荐算法的研究只是简单地融入用户的社交网络信息,没有考虑用户之间社会化信任网络的传递性;同时,该推荐算法的性能面临数据高度稀疏性问题的挑战.为了进一步解决这些问题,在传统的协同排序推荐算法(ListRank,List-wise Learning to Rank)和最新的社会化协同过滤算法(TrustMF,Social Collaborative Filtering by Trust)的基础上,提出了一种新的社会化协同排序推荐算法(TLRank),融合均高度稀疏的用户的显式评分数据和社会化信任网络数据,以进一步增强协同排序推荐算法的性能.实验结果表明:在各个评价指标下,TLRank算法的性能均优于几个经典的协同排序推荐算法,且复杂度低、运算时间与评分点个数线性相关;TLRank算法的推荐精度高、可扩展性好,适合处理大数据,可广泛运用于互联网信息推荐领域.展开更多
In this paper, to study rumor spreading, we propose a novel susceptible-infected-removed (SIR) model by introducing the trust mechanism. We derive mean-field equations that describe the dynamics of the SIR model on ...In this paper, to study rumor spreading, we propose a novel susceptible-infected-removed (SIR) model by introducing the trust mechanism. We derive mean-field equations that describe the dynamics of the SIR model on homogeneous networks and inhomogeneous networks. Then a steady-state analysis is conducted to investigate the critical threshold and the finaJ size of the rumor spreading. We show that the introduction of trust mechanism reduces the final rumor size and the velocity of rumor spreading, but increases the critical thresholds on both networks. Moreover, the trust mechanism not only greatly reduces the maximum rumor influence, but also postpones the rumor terminal time, which provides us with more time to take measures to control the rumor spreading. The theoretical results are confirmed by sufficient numerical simulations.展开更多
文摘已有的社会化协同排序推荐算法的研究只是简单地融入用户的社交网络信息,没有考虑用户之间社会化信任网络的传递性;同时,该推荐算法的性能面临数据高度稀疏性问题的挑战.为了进一步解决这些问题,在传统的协同排序推荐算法(ListRank,List-wise Learning to Rank)和最新的社会化协同过滤算法(TrustMF,Social Collaborative Filtering by Trust)的基础上,提出了一种新的社会化协同排序推荐算法(TLRank),融合均高度稀疏的用户的显式评分数据和社会化信任网络数据,以进一步增强协同排序推荐算法的性能.实验结果表明:在各个评价指标下,TLRank算法的性能均优于几个经典的协同排序推荐算法,且复杂度低、运算时间与评分点个数线性相关;TLRank算法的推荐精度高、可扩展性好,适合处理大数据,可广泛运用于互联网信息推荐领域.
基金Supported by the National Natural Science Foundation of China under Grant Nos.61103231,61103230the Innovation Program of Graduate Scientific Research in Institution of Higher Education of Jiangsu Province of China under Grant No.CXZZ110401+1 种基金the Basic Research Foundation of Engineering University of the Chinese People's Armed Police Force under Grant No.WJY201218 the Natural Science Basic Research Plan in Shaanxi Province of China under Grant No.2011JM8012
文摘In this paper, to study rumor spreading, we propose a novel susceptible-infected-removed (SIR) model by introducing the trust mechanism. We derive mean-field equations that describe the dynamics of the SIR model on homogeneous networks and inhomogeneous networks. Then a steady-state analysis is conducted to investigate the critical threshold and the finaJ size of the rumor spreading. We show that the introduction of trust mechanism reduces the final rumor size and the velocity of rumor spreading, but increases the critical thresholds on both networks. Moreover, the trust mechanism not only greatly reduces the maximum rumor influence, but also postpones the rumor terminal time, which provides us with more time to take measures to control the rumor spreading. The theoretical results are confirmed by sufficient numerical simulations.