期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
神经网络结构搜索在脑数据分析领域的研究进展
1
作者 李晴 汪启昕 +5 位作者 李子遇 祝志远 张诗皓 牟浩南 杨文婷 邬霞 《软件学报》 EI CSCD 北大核心 2024年第4期1682-1702,共21页
神经网络结构搜索(neural architecture search,NAS)是自动化机器学习的重要组成部分,已被广泛应用于多个领域,包括计算机视觉、语音识别等,能够针对特定数据、场景、任务寻找最优的深层神经网络结构.将NAS引入至脑数据分析领域,能够在... 神经网络结构搜索(neural architecture search,NAS)是自动化机器学习的重要组成部分,已被广泛应用于多个领域,包括计算机视觉、语音识别等,能够针对特定数据、场景、任务寻找最优的深层神经网络结构.将NAS引入至脑数据分析领域,能够在图像分割、特征提取、辅助诊断等多个应用领域大幅度提升性能,展现低能耗自动化机器学习的优势.基于NAS进行脑数据分析是当前的研究热点之一,同时也具有一定挑战.目前,在此领域,国内外可供参考的综述性文献较少.对近年来国内外相关文献进行了细致地调研分析,从算法模型、研究任务、实验数据等不同方面对NAS在脑数据分析领域的研究现状进行了综述.同时,也对能够支撑NAS训练的脑数据集进行了系统性总结,并对NAS在脑数据分析中存在的挑战和未来的研究方向进行了分析和展望. 展开更多
关键词 神经网络结构搜索 脑数据分析 神经网络 深度学习
下载PDF
神经网络结构搜索方法综述 被引量:4
2
作者 刘建伟 王新坦 《控制理论与应用》 EI CAS CSCD 北大核心 2023年第1期12-31,共20页
如今,深度学习广泛地应用于生活、工作中的各个方面,给我们带来了极大的便利.在此背景下,需要设计针对不同任务的神经网络结构,满足不同的需求.但是,人工设计神经网络结构需要专业的知识,进行大量的实验.因此,神经网络结构搜索算法的研... 如今,深度学习广泛地应用于生活、工作中的各个方面,给我们带来了极大的便利.在此背景下,需要设计针对不同任务的神经网络结构,满足不同的需求.但是,人工设计神经网络结构需要专业的知识,进行大量的实验.因此,神经网络结构搜索算法的研究显得极为重要.神经网络结构搜索(NAS)是自动深度学习(AutoDL)过程中的一个基本步骤,对深度学习的发展与应用有着重要的影响.早期,一些神经网络结构搜索算法虽然搜索到了性能优越的神经网络结构,但是需要大量的计算资源且搜索效率低下.因此,研究人员探索了多种设计神经网络结构的算法,也提出了许多减少计算资源、提高搜索效率的方法.本文首先简要介绍了神经网络结构的搜索空间,其次对神经网络结构搜索算法进行了全面的分类汇总、分析,主要包括随机搜索算法、进化算法、强化学习、基于梯度下降的方法、基于顺序模型的优化算法,再其次探索并总结了提高神经网络结构搜索效率的方法,最后探讨了目前神经网络结构搜索工作中存在的问题以及未来的研究方向. 展开更多
关键词 神经网络结构搜索 搜索空间 搜索策略 性能评估策略
下载PDF
单次神经网络结构搜索研究综述
3
作者 董佩杰 牛新 +1 位作者 魏自勉 陈学晖 《计算机工程与科学》 CSCD 北大核心 2023年第2期191-203,共13页
深度学习技术的快速发展与神经网络结构的创新关系密切。为提升网络结构设计效率,自动化网络结构设计算法—神经网络结构搜索NAS成为近年的研究热点。早期NAS算法通常要对大量候选网络进行训练和评估,带来了巨大的计算开销。通过迁移学... 深度学习技术的快速发展与神经网络结构的创新关系密切。为提升网络结构设计效率,自动化网络结构设计算法—神经网络结构搜索NAS成为近年的研究热点。早期NAS算法通常要对大量候选网络进行训练和评估,带来了巨大的计算开销。通过迁移学习技术,可以加速候选网络的收敛,从而提升网络结构搜索效率。基于权重迁移技术的单次神经网络结构搜索(One-shot NAS)算法以超图为基础,子图之间进行权重共享,提高了搜索效率,但是也面临着协同适应、排序相关性差等挑战性问题。首先介绍了基于权重共享的One-shot NAS算法的相关研究,然后从采样策略、过程解耦和阶段性3个方面对关键技术进行分析梳理,比较分析了典型算法的搜索效果,并对未来的研究方向进行了展望。 展开更多
关键词 神经网络结构搜索 单次神经网络结构搜索 权重共享 迁移学习 深度学习
下载PDF
面向神经网络结构搜索的植物叶片病害增强识别方法
4
作者 代国威 田志民 +1 位作者 樊景超 王朝雨 《西北林学院学报》 CSCD 北大核心 2023年第5期153-161,193,共10页
针对植物病害识别模型结构复杂且依赖于人为设计网络结构等问题,通过神经网络结构搜索(NAS),提出一种基于队列分块的神经网络结构搜索方法(NNSS),可实现超轻量级高精度植物叶片图像识别模型的自动构建。首先将12种在经济和环境下有益的... 针对植物病害识别模型结构复杂且依赖于人为设计网络结构等问题,通过神经网络结构搜索(NAS),提出一种基于队列分块的神经网络结构搜索方法(NNSS),可实现超轻量级高精度植物叶片图像识别模型的自动构建。首先将12种在经济和环境下有益的植物共计22类植物叶片图像作为训练样本,利用模糊c均值聚类(FCM)算法分割植物叶片的感染点,以获得叶片受关注的区域信息;通过图像像素的灰度空间相关性,采用快速灰度共生矩阵(FGLCM)算法提取6类受关注区域的纹理特征信息,获得的特征向量运用主成分变换选择重要特征;提出队列分块的局部搜索空间构造方法,将特征信息通过自动构建的模型进行分类。结果表明,NNSS方法取得了98.33%的准确率,特异性和灵敏性表现最优。相比于AlexNet、GoogLeNet、InceptionV3和VGGNet-16模型,改进VGG-INCEP16模型的性能得到进一步提升,但仍低于NNSS方法,这是由于该方法能结合数据集搜索合适的网络结构,对比次优VGG-INCEP16模型准确率至少提高了2.1%。研究结果显示,NNSS方法能够实现准确识别植物病害,对于神经网络模型结构自动搜索的未来具有较高的实际应用价值。 展开更多
关键词 图像处理 神经网络结构搜索 模糊C均值聚类 快速灰度共生矩阵 叶片病害识别
下载PDF
神经网络结构搜索前沿综述
5
作者 杨木润 曹润柘 +3 位作者 杜权 李垠桥 肖桐 朱靖波 《中文信息学报》 CSCD 北大核心 2023年第10期1-15,共15页
深度学习已经在多个领域得到了广泛的使用,并取得了令人瞩目的成绩。然而优秀的网络结构设计在很大程度上仍然依赖于研究者的先验知识和大量的实验验证,整个过程对于人力、算力等资源消耗巨大。因此,能否让计算机自动地找到最适用于当... 深度学习已经在多个领域得到了广泛的使用,并取得了令人瞩目的成绩。然而优秀的网络结构设计在很大程度上仍然依赖于研究者的先验知识和大量的实验验证,整个过程对于人力、算力等资源消耗巨大。因此,能否让计算机自动地找到最适用于当前任务的神经网络结构成为了当前研究的热点。近年来,研究人员对神经网络结构搜索(Neural Architecture Search,NAS)进行了各种改进,相关研究工作复杂且丰富。为了让读者对神经网络结构搜索方法有更清晰的了解,该文从神经网络结构搜索的三个维度:搜索空间、搜索策略和性能评估策略对现有方法进行了分析,并提出了未来可能的研究方向。 展开更多
关键词 神经网络结构搜索 搜索空间 搜索策略 性能评估策略 自动机器学习
下载PDF
基于神经网络结构搜索的卷积神经网络剪枝与压缩方法
6
作者 蒲亮 石毅 《自动化与仪表》 2023年第2期15-18,24,共5页
随着深度神经网络在人工智能领域的广泛应用,其模型参数也越来越庞大,神经网络剪枝就是用于在资源有限设备上部署深度神经网络。该文通过新的优化策略-加速近端梯度(APG)、轻量级网络设计、非结构化剪枝和神经网络结构搜索(NAS)等手段... 随着深度神经网络在人工智能领域的广泛应用,其模型参数也越来越庞大,神经网络剪枝就是用于在资源有限设备上部署深度神经网络。该文通过新的优化策略-加速近端梯度(APG)、轻量级网络设计、非结构化剪枝和神经网络结构搜索(NAS)等手段相结合,实现对目标分类和目标检测等常见卷积神经网络模型的压缩剪枝,实验表明压缩剪枝后模型准确率不变,参数量下降91.1%,计算量下降84.0%。最后将压缩剪枝后模型的推断过程在嵌入式架构中实现,为深度学习在边缘端设备平台上的实现奠定了基础。 展开更多
关键词 模型压缩 卷积神经网络 神经网络剪枝 神经网络结构搜索
下载PDF
基于神经网络结构搜索的目标识别方法 被引量:2
7
作者 卞伟伟 邱旭阳 申研 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2020年第4期88-92,共5页
针对目标识别需求,对基于神经网络的深度学习方法展开研究。由于深度学习模型中包含了对数据的先验假设,因此人工设计神经网络需要领域内专家丰富的先验知识,且具有劳动密集与时间成本高的缺点。为了获得超越专家个人经验、表现更好的网... 针对目标识别需求,对基于神经网络的深度学习方法展开研究。由于深度学习模型中包含了对数据的先验假设,因此人工设计神经网络需要领域内专家丰富的先验知识,且具有劳动密集与时间成本高的缺点。为了获得超越专家个人经验、表现更好的网络,采用一种可微神经结构搜索的高效结构搜索方法,将搜索空间放宽为连续的空间,然后通过梯度下降来优化体系结构的验证集性能,从而找到面向目标识别的最优神经网络结构。仿真实验结果表明,将基于神经网络结构搜索的目标识别方法应用于“低慢小”类目标识别是可行的。 展开更多
关键词 目标识别 卷积神经网络 神经网络结构搜索 深度学习
下载PDF
基于神经网络结构搜索的轻量化网络构建 被引量:3
8
作者 姚潇 史叶伟 +1 位作者 霍冠英 徐宁 《模式识别与人工智能》 CSCD 北大核心 2021年第11期1038-1048,共11页
轻量化网络可解决深度神经网络参数较多、计算量较高、难以部署在计算能力有限的边缘设备上等问题.针对轻量化网络中常用的分组卷积的分组结构问题,文中提出基于神经网络结构搜索的轻量化网络.将不同分组的卷积单元作为搜索空间,使用神... 轻量化网络可解决深度神经网络参数较多、计算量较高、难以部署在计算能力有限的边缘设备上等问题.针对轻量化网络中常用的分组卷积的分组结构问题,文中提出基于神经网络结构搜索的轻量化网络.将不同分组的卷积单元作为搜索空间,使用神经网络结构搜索,得到网络的分组结构和整体架构.同时为了兼顾准确率与计算量,提出循环退火搜索策略,用于解决神经网络结构搜索的多目标优化问题.在数据集上的实验表明,文中网络识别准确率较高,时间复杂度和空间复杂度较低. 展开更多
关键词 轻量化网络 模型压缩 分组卷积 神经网络结构搜索 多目标优化
下载PDF
深度神经网络结构搜索综述 被引量:10
9
作者 唐浪 李慧霞 +2 位作者 颜晨倩 郑侠武 纪荣嵘 《中国图象图形学报》 CSCD 北大核心 2021年第2期245-264,共20页
深度神经网络在图像识别、语言识别和机器翻译等人工智能任务中取得了巨大进展,很大程度上归功于优秀的神经网络结构设计。神经网络大都由手工设计,需要专业的机器学习知识以及大量的试错。为此,自动化的神经网络结构搜索成为研究热点... 深度神经网络在图像识别、语言识别和机器翻译等人工智能任务中取得了巨大进展,很大程度上归功于优秀的神经网络结构设计。神经网络大都由手工设计,需要专业的机器学习知识以及大量的试错。为此,自动化的神经网络结构搜索成为研究热点。神经网络结构搜索(neural architecture search,NAS)主要由搜索空间、搜索策略与性能评估方法3部分组成。在搜索空间设计上,出于计算量的考虑,通常不会搜索整个网络结构,而是先将网络分成几块,然后搜索块中的结构。根据实际情况的不同,可以共享不同块中的结构,也可以对每个块单独搜索不同的结构。在搜索策略上,主流的优化方法包含强化学习、进化算法、贝叶斯优化和基于梯度的优化等。在性能评估上,为了节省计算时间,通常不会将每一个网络都充分训练到收敛,而是通过权值共享、早停等方法尽可能减小单个网络的训练时间。与手工设计的网络相比,神经网络结构搜索得到的深度神经网络具有更好的性能。在Image Net分类任务上,与手工设计的MobileNetV2相比,通过神经网络结构搜索得到的MobileNetV3减少了近30%的计算量,并且top-1分类精度提升了3.2%;在Cityscapes语义分割任务上,与手工设计的Deep Labv3+相比,通过神经网络结构搜索得到的Auto-DeepLab-L可以在没有Image Net预训练的情况下,达到比Deep Labv3+更高的平均交并比(mean intersection over union,mIOU),同时减小一半以上的计算量。神经网络结构搜索得到的深度神经网络通常比手工设计的神经网络有着更好的表现,是未来神经网络设计的发展趋势。 展开更多
关键词 人工智能 计算机视觉 深度神经网络 强化学习 进化算法 神经网络结构搜索(NAS)
原文传递
深度学习的轻量化神经网络结构研究综述 被引量:27
10
作者 王军 冯孙铖 程勇 《计算机工程》 CAS CSCD 北大核心 2021年第8期1-13,共13页
随着深度神经网络和智能移动设备的快速发展,网络结构轻量化设计逐渐成为前沿且热门的研究方向,而轻量化的本质是在保持深度神经网络精度的前提下优化存储空间和提升运行速度。阐述深度学习的轻量化网络结构设计方法,对比与分析人工设... 随着深度神经网络和智能移动设备的快速发展,网络结构轻量化设计逐渐成为前沿且热门的研究方向,而轻量化的本质是在保持深度神经网络精度的前提下优化存储空间和提升运行速度。阐述深度学习的轻量化网络结构设计方法,对比与分析人工设计的轻量化方法、基于神经网络结构搜索的轻量化方法和基于自动模型压缩的轻量化方法的创新点与优劣势,总结与归纳上述3种主流轻量化方法中性能优异的网络结构并分析各自的优势和局限性。在此基础上,指出轻量化网络结构设计所面临的挑战,同时对其应用方向及未来发展趋势进行展望。 展开更多
关键词 深度学习 轻量化设计 深度可分离卷积 Octave卷积 神经网络结构搜索 模型压缩
下载PDF
基于最优架构搜索网络的液压泵故障诊断改进方法研究
11
作者 郑直 刘彤谣 +2 位作者 赵文博 刘伟民 王志军 《机床与液压》 北大核心 2024年第19期216-224,共9页
针对神经网络结构搜索方法(NAS)在搜索最优结构时存在性能评估效率偏低,以及由于模型泛化性能力不足导致液压泵故障诊断精度过低等问题,提出一种改进的Data-free NAS方法。通过引入CAME优化器和热重启余弦退火优化算法,分别替代SGD优化... 针对神经网络结构搜索方法(NAS)在搜索最优结构时存在性能评估效率偏低,以及由于模型泛化性能力不足导致液压泵故障诊断精度过低等问题,提出一种改进的Data-free NAS方法。通过引入CAME优化器和热重启余弦退火优化算法,分别替代SGD优化器和LambdaLR优化算法,对Data-free NAS的诊断精度和计算效率等性能评估验证功能进行改进优化处理。通过液压泵实测故障实验验证分析可知:所提改进方法较原方法具有显著有效性和优越性;CAME优化器在优化模型的学习率和动量等权重超参数方面具有明显优势,精度和效率分别提升了7.24%和37.5%,且精度高达100%;热重启余弦退火优化算法可优化学习率参数,使效率提升了81.25%。 展开更多
关键词 神经网络结构搜索 液压泵 CAME优化器 热重启余弦退火算法 故障诊断
下载PDF
基于自动搜索神经网络技术的军事图像分类 被引量:3
12
作者 周川 陈雷霆 陈雪地 《指挥信息系统与技术》 2021年第1期16-21,共6页
近年来神经网络在图像分类上取得了成绩,然而军事图像具有数据量少、图像清晰度不高、军事目标与环境相似度较高等特点,导致传统的人工神经网络在军事图像数据集处理方面表现不佳,因此急需提高神经网络在军事图像分类方面的性能。结合... 近年来神经网络在图像分类上取得了成绩,然而军事图像具有数据量少、图像清晰度不高、军事目标与环境相似度较高等特点,导致传统的人工神经网络在军事图像数据集处理方面表现不佳,因此急需提高神经网络在军事图像分类方面的性能。结合自动搜索神经网络技术,提出了一种基于自动搜索神经网络技术的军事图像分类方法,并采用强化学习算法、参数共享和推进式搜索策略等思想,设计了神经网络结构搜索算法。试验结果表明,该方法在提高军事图像分类性能方面具有有效性和准确性。 展开更多
关键词 军事图像分类 神经网络结构搜索 强化学习
下载PDF
基于自适应剪枝率与高效权重继承的神经网络通道剪枝方法 被引量:1
13
作者 刘相呈 曹健 +3 位作者 姚宏毅 徐鹏涛 张袁 王源 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第5期764-772,共9页
目前的通道级剪枝方法往往需要复杂的搜索和微调过程,并且容易陷入局部最优解,针对此问题,提出一种新颖的通道剪枝框架(AdaPruner),只需通过一次稀疏训练,就可以针对各种预算复杂度,自适应地生成相应的子网络,并高效地选择适合当前结构... 目前的通道级剪枝方法往往需要复杂的搜索和微调过程,并且容易陷入局部最优解,针对此问题,提出一种新颖的通道剪枝框架(AdaPruner),只需通过一次稀疏训练,就可以针对各种预算复杂度,自适应地生成相应的子网络,并高效地选择适合当前结构的初始化权重。在图像分类任务的多个数据集上实验结果表明,该方法在常用的残差网络和轻量级网络上的性能都优于以往剪枝方法。 展开更多
关键词 卷积神经网络 通道剪枝 稀疏化训练 神经网络结构搜索 图像分类
下载PDF
轻量化卷积神经网络的研究综述 被引量:8
14
作者 易振通 吴瑰 +1 位作者 官端正 陶俊 《工业控制计算机》 2022年第10期109-111,114,共4页
卷积神经网络的轻量化研究工作正成为热门方向,根据其相关理论技术,用人工设计方法和神经网络结构搜索方法对常用的7个轻量化模型进行了剖析,并归纳了它们的核心创新点。最后以此为基础,对该方向的发展作了展望。
关键词 卷积神经网络 轻量化 人工设计 神经网络结构搜索
下载PDF
面向语言模型的全自动单元结构搜索
15
作者 万全 吴霖 余正涛 《小型微型计算机系统》 CSCD 北大核心 2022年第11期2308-2313,共6页
可微神经网络结构搜索(DARTS)是目前主流的神经结构搜索(Neural architecture search,NAS)方法之一,但大多数基于DARTS的方法都应用于计算机视觉领域,在自然语言处理领域的研究相对较少.语言模型是目前NAS在自然语言领域应用较多的任务,... 可微神经网络结构搜索(DARTS)是目前主流的神经结构搜索(Neural architecture search,NAS)方法之一,但大多数基于DARTS的方法都应用于计算机视觉领域,在自然语言处理领域的研究相对较少.语言模型是目前NAS在自然语言领域应用较多的任务,DARTS在应用于语言模型任务时,会先对输入进行人工处理,整个过程为:输入-人工处理-结构搜索-输出,不满足NAS不靠人工干预,让机器自动设计网络结构的初衷.本文在DARTS的基础上提出了一种基于全自动搜索单元的NAS方法:1)移除结构搜索前的人工处理过程,实现整个单元搜索过程自动化;2)增加节点和操作数量抵消移除人工处理过程带来的模型规模和复杂度降低的影响;3)Softmax决策优化.本文提出的方法实现了单元搜索过程全自动化,搜索到的模型结构也在PTB和WT2数据集上取得了一定的竞争性. 展开更多
关键词 神经网络结构搜索 语言模型 自然与语言处理 DARTS
下载PDF
改进鲸鱼算法及其在浅层神经网络搜索中的权值阈值优化 被引量:7
16
作者 刘威 郭直清 +4 位作者 王东 刘光伟 姜丰 牛英杰 马灵潇 《控制与决策》 EI CSCD 北大核心 2023年第4期1144-1152,共9页
为设计出简便高效的方法搜索最优神经网络结构,提出一种改进鲸鱼优化算法的浅层神经网络搜索方法.该方法首先通过模拟鲸鱼狩猎的个体偏好行为和鲸鱼群位置移动的非线性权值更新机制对传统鲸鱼优化算法进行改进;然后将改进鲸鱼优化算法... 为设计出简便高效的方法搜索最优神经网络结构,提出一种改进鲸鱼优化算法的浅层神经网络搜索方法.该方法首先通过模拟鲸鱼狩猎的个体偏好行为和鲸鱼群位置移动的非线性权值更新机制对传统鲸鱼优化算法进行改进;然后将改进鲸鱼优化算法作为浅层BP神经网络结构搜索策略,构建基于浅层BP神经网络的最优网络结构的权值阈值搜索优化方法.数值实验结果表明,改进的鲸鱼优化算法不仅在求解不同维复杂函数上具有良好的寻优性能,而且通过改进鲸鱼优化算法搜索得到的最优浅层BP神经网络结构在回归任务中具有更好的预测精度和泛化性能. 展开更多
关键词 神经网络结构搜索 鲸鱼优化算法 个体偏好选择 马尔可夫链 BP神经网络 神经进化
原文传递
改进的语义分割模型及其应用
17
作者 王耀文 程军圣 杨宇 《计算机工程与应用》 CSCD 北大核心 2024年第2期337-343,共7页
训练语义分割网络模型需要较为繁琐的人工标注作为训练标签,同时语义分割模型在构建和运行过程中也存在超参数较难确定以及模型过于庞大等问题。为解决这类问题,提出了一种基于标注框生成热点图的标签生成方法,简化了语义分割训练标签... 训练语义分割网络模型需要较为繁琐的人工标注作为训练标签,同时语义分割模型在构建和运行过程中也存在超参数较难确定以及模型过于庞大等问题。为解决这类问题,提出了一种基于标注框生成热点图的标签生成方法,简化了语义分割训练标签的人工标注过程。以及在可微分神经网络结构搜索方法的基础上提出了一种对硬件要求更低的神经网络结构搜索方法,并基于此种方法改进了特征金字塔结构,构建了一个改进的语义分割模型,并在安全帽与口罩检测数据集上进行了试验。与U-Net、FPN等模型比较,新的模型在参数量、计算速度以及精确度上都更有优势。 展开更多
关键词 语义分割模型 神经网络结构搜索 特征金字塔结构 安全帽与口罩检测
下载PDF
多声学场景下端到端语音识别声学编码器的自适应 被引量:1
18
作者 刘育坤 郑霖 +1 位作者 黎塔 张鹏远 《声学学报》 EI CAS CSCD 北大核心 2023年第6期1260-1268,共9页
提出了一种面向多样化声学场景自适应设计声学编码器的方法(SAE)。该方法通过学习不同声学场景下语音中包含的声学特征的差异,适应性地为端到端语音识别任务设计出合适的声学编码器。通过引入神经网络结构搜索技术,提高了编码器设计的... 提出了一种面向多样化声学场景自适应设计声学编码器的方法(SAE)。该方法通过学习不同声学场景下语音中包含的声学特征的差异,适应性地为端到端语音识别任务设计出合适的声学编码器。通过引入神经网络结构搜索技术,提高了编码器设计的有效性,从而改善了下游识别任务的性能。在Aishell-1、HKUST和SWBD三个常用的中英文数据集上的实验表明,通过所提场景自适应设计方法得到的声学编码器相比已有的声学编码器可以获得平均5%以上的错误率改善。所提方法是一种深入分析特定场景下语音特征、针对性设计高性能声学编码器的有效方法。 展开更多
关键词 自动语音识别 声学编码器 自适应 神经网络结构搜索
原文传递
大数据智能:从数据拟合最优解到博弈对抗均衡解 被引量:8
19
作者 蒋胤傑 况琨 吴飞 《智能系统学报》 CSCD 北大核心 2020年第1期175-182,共8页
数据驱动的机器学习(特别是深度学习)在自然语言处理、计算机视觉分析和语音识别等领域取得了巨大进展,是人工智能研究的热点。但是传统机器学习是通过各种优化算法拟合训练数据集上的最优模型,即在模型上的平均损失最小,而在现实生活... 数据驱动的机器学习(特别是深度学习)在自然语言处理、计算机视觉分析和语音识别等领域取得了巨大进展,是人工智能研究的热点。但是传统机器学习是通过各种优化算法拟合训练数据集上的最优模型,即在模型上的平均损失最小,而在现实生活的很多问题(如商业竞拍、资源分配等)中,人工智能算法学习的目标应该是是均衡解,即在动态情况下也有较好效果。这就需要将博弈的思想应用于大数据智能。通过蒙特卡洛树搜索和强化学习等方法,可以将博弈与人工智能相结合,寻求博弈对抗模型的均衡解。从数据拟合的最优解到博弈对抗的均衡解能让大数据智能有更广阔的应用空间。 展开更多
关键词 人工智能 大数据 最优拟合 神经网络结构搜索 博弈论 纳什均衡
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部