The three dimensional (3D) geometry of soil macropores largely controls preferential flow, which is a significant infiltrating mechanism for rainfall in forest soils and affects slope stability. However, detailed st...The three dimensional (3D) geometry of soil macropores largely controls preferential flow, which is a significant infiltrating mechanism for rainfall in forest soils and affects slope stability. However, detailed studies on the 3D geometry of macropore networks in forest soils are rare. The intense rainfall-triggered potentially unstable slopes were threatening the villages at the downstream of Touzhai valley (Yunnan, China). We visualized and quantified the 3D macropore networks in undisturbed soil columns (Histosols) taken from a forest hillslope in Touzhai valley, and compared them with those in agricultural soils (corn and soybean in USA; barley, fodder beet and red fescue in Denmark) and grassland soils in USA. We took two large undisturbed soil columns (250 mm^25o mmxsoo mm), and scanned the soil columns at in-situ soil water content conditions using X-ray computed tomography at a voxel resolution of 0.945 × 0.945 × 1.500o mm^3. After reconstruction and visualization, we quantified the characteristics of macropore networks. In the studied forest soils, the main types of maeropores were root channels, inter-aggregate voids, maeropores without knowing origin, root-soil interfaee and stone-soil interface. While maeropore networks tend to be more eomplex, larger, deeper and longer. The forest soils have high maeroporosity, total maeropore wall area density, node density, and large maeropore volume, hydraulie radius, mean maeropore length, angle, and low tortuosity. The findings suggest that maeropore networks in the forest soils have high inter- connectivity, vertical continuity, linearity and less vertically oriented.展开更多
The conversion of subalpine forests into grasslands for pastoral use is a well-knownphenomenon, although for most mountain areas the timing of deforestation has not been determined. The presence of charcoal fragments ...The conversion of subalpine forests into grasslands for pastoral use is a well-knownphenomenon, although for most mountain areas the timing of deforestation has not been determined. The presence of charcoal fragments in soil profiles affected by shallow landsliding enabled us to date the occurrence of fires and the periods of conversion ofsubalpine forest into grasslands in the Urbión Mountains, Iberian Range, Spain. We found that the treeline in the highest parts of the northwestern massifs of the Iberian Range(the Urbión, Demanda, Neila, and Cebollera massifs) is currently between 1500 and 1600 m a.s.l., probably because of pastoral use of the subalpine belt, whereas in the past it would have reached almost the highest divides(at approximately 2100–2200 m a.s.l.). The radiocarbon dates obtained indicate that the transformation of the subalpine belt occurred during the Late Neolithic, Chalcolithic, Bronze Age, Iron Age, and Middle Ages. Forest clearing was probably moderate during fires prior to the Middle Ages, as the small size of the sheep herds and the local character of the markets only required small clearings, and therefore more limited fires. Thus, it is likely that the forest recovered burnt areas in a few decades; this suggests the management of the forest and grasslands following a slash-andburn system. During the Middle and Modern Ages deforestation and grassland expansion affected most of the subalpine belt and coincided with the increasing prevalence of transhumance, as occurred in other mountains in the Iberian Peninsula(particularly the Pyrenees). Although the occurrence of shallow landslides following deforestation between the Neolithic and the Roman Period cannot be ruled out, the most extensive shallow landsliding processes would have occurred from the Middle Ages until recent times.展开更多
基金financially supported by the National Science Foundation of China-Yunnan Joint Fund(U1502232)the Natural Science Foundation of Yunnan Province(2014FD007)the Natural Science Foundation of Kunming University of Science and Technology(KKSY201406009)
文摘The three dimensional (3D) geometry of soil macropores largely controls preferential flow, which is a significant infiltrating mechanism for rainfall in forest soils and affects slope stability. However, detailed studies on the 3D geometry of macropore networks in forest soils are rare. The intense rainfall-triggered potentially unstable slopes were threatening the villages at the downstream of Touzhai valley (Yunnan, China). We visualized and quantified the 3D macropore networks in undisturbed soil columns (Histosols) taken from a forest hillslope in Touzhai valley, and compared them with those in agricultural soils (corn and soybean in USA; barley, fodder beet and red fescue in Denmark) and grassland soils in USA. We took two large undisturbed soil columns (250 mm^25o mmxsoo mm), and scanned the soil columns at in-situ soil water content conditions using X-ray computed tomography at a voxel resolution of 0.945 × 0.945 × 1.500o mm^3. After reconstruction and visualization, we quantified the characteristics of macropore networks. In the studied forest soils, the main types of maeropores were root channels, inter-aggregate voids, maeropores without knowing origin, root-soil interfaee and stone-soil interface. While maeropore networks tend to be more eomplex, larger, deeper and longer. The forest soils have high maeroporosity, total maeropore wall area density, node density, and large maeropore volume, hydraulie radius, mean maeropore length, angle, and low tortuosity. The findings suggest that maeropore networks in the forest soils have high inter- connectivity, vertical continuity, linearity and less vertically oriented.
基金the projects INDICA(CGL2011-27753-C02-01 and-02)DINAMO2(CGL2012-33063)funded by the Spanish Ministry of Economy and Competitiveness
文摘The conversion of subalpine forests into grasslands for pastoral use is a well-knownphenomenon, although for most mountain areas the timing of deforestation has not been determined. The presence of charcoal fragments in soil profiles affected by shallow landsliding enabled us to date the occurrence of fires and the periods of conversion ofsubalpine forest into grasslands in the Urbión Mountains, Iberian Range, Spain. We found that the treeline in the highest parts of the northwestern massifs of the Iberian Range(the Urbión, Demanda, Neila, and Cebollera massifs) is currently between 1500 and 1600 m a.s.l., probably because of pastoral use of the subalpine belt, whereas in the past it would have reached almost the highest divides(at approximately 2100–2200 m a.s.l.). The radiocarbon dates obtained indicate that the transformation of the subalpine belt occurred during the Late Neolithic, Chalcolithic, Bronze Age, Iron Age, and Middle Ages. Forest clearing was probably moderate during fires prior to the Middle Ages, as the small size of the sheep herds and the local character of the markets only required small clearings, and therefore more limited fires. Thus, it is likely that the forest recovered burnt areas in a few decades; this suggests the management of the forest and grasslands following a slash-andburn system. During the Middle and Modern Ages deforestation and grassland expansion affected most of the subalpine belt and coincided with the increasing prevalence of transhumance, as occurred in other mountains in the Iberian Peninsula(particularly the Pyrenees). Although the occurrence of shallow landslides following deforestation between the Neolithic and the Roman Period cannot be ruled out, the most extensive shallow landsliding processes would have occurred from the Middle Ages until recent times.