Amplified fragment length polymorphisms(AFLP) markers were developed to assess the genetic variation of populations and clones of Rhopilema esculentum Kishinouye(Scyphozoa,Rhizostomatidae).One hundred and seventy-nine...Amplified fragment length polymorphisms(AFLP) markers were developed to assess the genetic variation of populations and clones of Rhopilema esculentum Kishinouye(Scyphozoa,Rhizostomatidae).One hundred and seventy-nine loci from 56 individuals of two hatchery populations and two wild populations were genotyped with five primer combinations.The polymorphic ratio,Shannon's diversity index and average heterozygosity were 70.3%,0.346 and 0.228 for the white hatchery population,74.3%,0.313,and 0.201 for the red hatchery population,79.3%,0.349,and 0.224 for the Jiangsu wild population,and 74.9%,0.328 and 0.210 for the Penglai wild population,respectively.Thus,all populations had a relatively high level of genetic diversity.A specific band was identified that could separate the white from the red hatchery population.There was 84.85% genetic differentiation within populations.Individual cluster analysis using unweighted pair-group method with arithmetic mean(UPGMA) suggested that hatchery populations and wild populations could be divided.For the hatchery populations,the white and red populations clustered separately;however,for the wild populations,Penglai and Jiangsu populations clustered together.The genetic diversity at the clone level was also determined.Our data suggest that there are relatively high genetic diversities within populations but low genetic differentiation between populations,which may be related to the long-term use of germplasm resources from Jiangsu Province for artificial seeding and releasing.These findings will benefit the artificial seeding and conservation of the germplasm resources.展开更多
Japanese flounder is one of the most important commercial species in China; however, information on the genetic background of natural populations in China seas is scarce. The lack of genetic data has hampered fishery ...Japanese flounder is one of the most important commercial species in China; however, information on the genetic background of natural populations in China seas is scarce. The lack of genetic data has hampered fishery management and aquaculture development programs for this species. In the present study, we have analyzed the genetic diversity in natural populations of Japanese flounder sampled from the Yellow Sea (Qingdao population, QD) and East China Sea (Zhoushan population, ZS) using 10 polymorphic mierosatellite loci and cytochrome c oxidase subunit I (COI) sequencing data. A total of 68 different alleles were observed over 10 microsatellite loci. The total number of alleles per locus ranged from 2 to 9, and the number of genotypes per locus ranged from 3 to 45. The observed heterozygosity and expected heterozygosity in QD were 0.733 and 0.779, respectively, and in ZS the heterozygosity values were 0.708 and 0.783, respectively. Significant departures from Hardy-Weinberg equilibrium were observed in 7 of the 10 microsatellite loci in each of the two populations. The COI sequencing analysis revealed 25 polymorphic sites and 15 haplotypes in the two populations. The haplotype diversity and nucleotide diversity in the QD population were 0.746±0.072 8 and 0.003 34±0.001 03 respectively, and in ZS population the genetic diversity values were 0.712±0.047 0 and 0.003 18±0.000 49, respectively. The microsatellite data (Fst=0.048 7, P〈0.001) and mitochondrial DNA data (Fst=0.128, P〈0.001) both revealed significant genetic differentiation between the two populations. The information on the genetic variation and differentiation in Japanese flounder obtained in this study could be used to set up suitable guidelines for the management and conservation of this species, as well as for managing artificial selection programs. In future studies, more geographically diverse stocks should be used to obtain a deeper understanding of the population structure of Japanese flounder in the China seas and adjacent regions.展开更多
基金Supported by the Taishan Scholarship of Aquatic Animal Nutrition and Feed and the National Marine Public Welfare Research Project(Nos.201205025,201305001)
文摘Amplified fragment length polymorphisms(AFLP) markers were developed to assess the genetic variation of populations and clones of Rhopilema esculentum Kishinouye(Scyphozoa,Rhizostomatidae).One hundred and seventy-nine loci from 56 individuals of two hatchery populations and two wild populations were genotyped with five primer combinations.The polymorphic ratio,Shannon's diversity index and average heterozygosity were 70.3%,0.346 and 0.228 for the white hatchery population,74.3%,0.313,and 0.201 for the red hatchery population,79.3%,0.349,and 0.224 for the Jiangsu wild population,and 74.9%,0.328 and 0.210 for the Penglai wild population,respectively.Thus,all populations had a relatively high level of genetic diversity.A specific band was identified that could separate the white from the red hatchery population.There was 84.85% genetic differentiation within populations.Individual cluster analysis using unweighted pair-group method with arithmetic mean(UPGMA) suggested that hatchery populations and wild populations could be divided.For the hatchery populations,the white and red populations clustered separately;however,for the wild populations,Penglai and Jiangsu populations clustered together.The genetic diversity at the clone level was also determined.Our data suggest that there are relatively high genetic diversities within populations but low genetic differentiation between populations,which may be related to the long-term use of germplasm resources from Jiangsu Province for artificial seeding and releasing.These findings will benefit the artificial seeding and conservation of the germplasm resources.
基金Supported by the Project of Zhejiang Province of China (Nos.2009C12078, 2010F20006, 2010R411054, 2010R50025)
文摘Japanese flounder is one of the most important commercial species in China; however, information on the genetic background of natural populations in China seas is scarce. The lack of genetic data has hampered fishery management and aquaculture development programs for this species. In the present study, we have analyzed the genetic diversity in natural populations of Japanese flounder sampled from the Yellow Sea (Qingdao population, QD) and East China Sea (Zhoushan population, ZS) using 10 polymorphic mierosatellite loci and cytochrome c oxidase subunit I (COI) sequencing data. A total of 68 different alleles were observed over 10 microsatellite loci. The total number of alleles per locus ranged from 2 to 9, and the number of genotypes per locus ranged from 3 to 45. The observed heterozygosity and expected heterozygosity in QD were 0.733 and 0.779, respectively, and in ZS the heterozygosity values were 0.708 and 0.783, respectively. Significant departures from Hardy-Weinberg equilibrium were observed in 7 of the 10 microsatellite loci in each of the two populations. The COI sequencing analysis revealed 25 polymorphic sites and 15 haplotypes in the two populations. The haplotype diversity and nucleotide diversity in the QD population were 0.746±0.072 8 and 0.003 34±0.001 03 respectively, and in ZS population the genetic diversity values were 0.712±0.047 0 and 0.003 18±0.000 49, respectively. The microsatellite data (Fst=0.048 7, P〈0.001) and mitochondrial DNA data (Fst=0.128, P〈0.001) both revealed significant genetic differentiation between the two populations. The information on the genetic variation and differentiation in Japanese flounder obtained in this study could be used to set up suitable guidelines for the management and conservation of this species, as well as for managing artificial selection programs. In future studies, more geographically diverse stocks should be used to obtain a deeper understanding of the population structure of Japanese flounder in the China seas and adjacent regions.