In the present study, the genetic diversity of one selected strain (Pujiang No. 1), two domesticated populations (GA and HX) and four wild populations (LZ, YN, SS and JL) of blunt snout bream (Megalobrama ambly...In the present study, the genetic diversity of one selected strain (Pujiang No. 1), two domesticated populations (GA and HX) and four wild populations (LZ, YN, SS and JL) of blunt snout bream (Megalobrama amblycephala) was analyzed using 17 microsatellite markers. The results showed that an average of 4.88-7.65 number of alleles (A); an average of 3.20-5.33 effective alleles (Ne); average observed beterozygosity (Ho) of 0.6985-0.9044; average expected beterozygosity (He) of 0.6501--0.7805; and the average polymorphism information content (PIC) at 0.5706-0.7226. Pairwise FST value between populations ranged from 0.0307-0.1451, and Nei's standard genetic distance between populations was 0.0938-0.4524. The expected heterozygosities in the domesticated populations (GA and HX) were significantly lower than those found in three wild populations (LZ, SS and JL), but no difference was detected when compared with the wild YN population. Likewise, no difference was found between the four wild populations or two domesticated populations. The expected heterozygosity in Pujiang No. 1 was higher than the two domesticated populations and lower than the four wild populations. Regarding pairwise Fsr value between populations, permutation test P-values were significant between the GA, HX and PJ populations, but not between the four wild populations. These results showed that the expected beterozygosity in the selected strain of blunt snout bream, after seven generations of selective breeding, was lower than that of wild populations, but this strain retains higher levels of genetic diversity than domesticated populations. The genetic differences and differentiation amongst wild populations, domesticated populations and the genetically improved strain of blunt snout bream will provide important conservation criteria and guide the utilization of germplasm resources.展开更多
Fenneropenaeus penicillatus (redtail shrimp) is an important marine commercial animal in China. Recently, its resources have been depleted rapidly as a result of, for example, over-exploitation and environmental deg...Fenneropenaeus penicillatus (redtail shrimp) is an important marine commercial animal in China. Recently, its resources have been depleted rapidly as a result of, for example, over-exploitation and environmental degradation of spawning grounds. Therefore, we analyzed the genetic diversity and differentiation of nine wild populations of F. penicillatus of China (Ningde, Lianjiang, Putian, Xiamen, Quanzhou, Zhangpu, Dongshan, Nanao, and Shenzhen populations) by amplified fragment .!ength polymorphism (AFLP) technology, to provide genetic information necessary for resource protection, rejuvenation, artificial breeding, and sustainable use of the resource. Eight AFLP primer pairs were used for amplification, and 508 bands were detected among the populations. The results show that the percentage of polymorphic loci (P) ranged from 41.34% to 63.58%; the Nei's gene diversity (H) of the populations was 0.119 4-0.230 5; and Shannon's Information Index (/) was 0.184 1-0.342 5. These genetic data indicate that the genetic diversity of F. penicillatus was high. The genetic differentiation coefficient (GsT=0.216 2) and gene flow (Nm=1.812 4) show that there was a high level of genetic differentiation and a moderate level of gene flow among populations. More studies on the genetic differentiation mechanism of F. peniillatus along the south-eastem coast of China need to be conducted to find more effective scientific protection strategies for the conservation ofF. penicillatus genetic resources.展开更多
The level of genetic variation among individuals may affect performance by reducing the ability of prey to detect and escape from predators if lack of genetic variation reduces flight ability directly or indirectly th...The level of genetic variation among individuals may affect performance by reducing the ability of prey to detect and escape from predators if lack of genetic variation reduces flight ability directly or indirectly through reduced parasite resistance. We investigated vulnerability of common avian prey species to predation by the sparrowhawk Accipiter nisus and the goshawk A. gentilis in relation to an index of genetic similarity among adults of potential prey species. We estimated a prey vulnerability in- dex that reflects the abundance of prey relative to the expected abundance according to local population density, and related this index to band sharing coefficients based on analyses of minisatellites for adults in local breeding populations. The prey vulnera- bility index was positively correlated with the band sharing coefficient in both predators, even when controlling for potentially confounding variables. These findings indicate that prey species with high band sharing coefficients, and hence low levels of genetic variation, are more readily caught by avian predators. Therefore, predation may constitute a major cost of low levels of genetic variation in extant populations of prey [Current Zoology 61(1): 1-9, 2015].展开更多
基金supported by the National Natural Science Foundation of China(30630051)Doctoral Research Initial Funding from Shanghai Ocean University(A-2400-11-0186)
文摘In the present study, the genetic diversity of one selected strain (Pujiang No. 1), two domesticated populations (GA and HX) and four wild populations (LZ, YN, SS and JL) of blunt snout bream (Megalobrama amblycephala) was analyzed using 17 microsatellite markers. The results showed that an average of 4.88-7.65 number of alleles (A); an average of 3.20-5.33 effective alleles (Ne); average observed beterozygosity (Ho) of 0.6985-0.9044; average expected beterozygosity (He) of 0.6501--0.7805; and the average polymorphism information content (PIC) at 0.5706-0.7226. Pairwise FST value between populations ranged from 0.0307-0.1451, and Nei's standard genetic distance between populations was 0.0938-0.4524. The expected heterozygosities in the domesticated populations (GA and HX) were significantly lower than those found in three wild populations (LZ, SS and JL), but no difference was detected when compared with the wild YN population. Likewise, no difference was found between the four wild populations or two domesticated populations. The expected heterozygosity in Pujiang No. 1 was higher than the two domesticated populations and lower than the four wild populations. Regarding pairwise Fsr value between populations, permutation test P-values were significant between the GA, HX and PJ populations, but not between the four wild populations. These results showed that the expected beterozygosity in the selected strain of blunt snout bream, after seven generations of selective breeding, was lower than that of wild populations, but this strain retains higher levels of genetic diversity than domesticated populations. The genetic differences and differentiation amongst wild populations, domesticated populations and the genetically improved strain of blunt snout bream will provide important conservation criteria and guide the utilization of germplasm resources.
基金Supported by the Natural Science Foundation of Fujian Province (No.2010J01213)the Special Program for Fujian Provincial Universities (No.JK2010034)+1 种基金the Program for New Century Excellent Talents in Fujian Province Universitythe Foundation for Innovative Research Team of Jimei University, China (No. 2010A004)
文摘Fenneropenaeus penicillatus (redtail shrimp) is an important marine commercial animal in China. Recently, its resources have been depleted rapidly as a result of, for example, over-exploitation and environmental degradation of spawning grounds. Therefore, we analyzed the genetic diversity and differentiation of nine wild populations of F. penicillatus of China (Ningde, Lianjiang, Putian, Xiamen, Quanzhou, Zhangpu, Dongshan, Nanao, and Shenzhen populations) by amplified fragment .!ength polymorphism (AFLP) technology, to provide genetic information necessary for resource protection, rejuvenation, artificial breeding, and sustainable use of the resource. Eight AFLP primer pairs were used for amplification, and 508 bands were detected among the populations. The results show that the percentage of polymorphic loci (P) ranged from 41.34% to 63.58%; the Nei's gene diversity (H) of the populations was 0.119 4-0.230 5; and Shannon's Information Index (/) was 0.184 1-0.342 5. These genetic data indicate that the genetic diversity of F. penicillatus was high. The genetic differentiation coefficient (GsT=0.216 2) and gene flow (Nm=1.812 4) show that there was a high level of genetic differentiation and a moderate level of gene flow among populations. More studies on the genetic differentiation mechanism of F. peniillatus along the south-eastem coast of China need to be conducted to find more effective scientific protection strategies for the conservation ofF. penicillatus genetic resources.
文摘The level of genetic variation among individuals may affect performance by reducing the ability of prey to detect and escape from predators if lack of genetic variation reduces flight ability directly or indirectly through reduced parasite resistance. We investigated vulnerability of common avian prey species to predation by the sparrowhawk Accipiter nisus and the goshawk A. gentilis in relation to an index of genetic similarity among adults of potential prey species. We estimated a prey vulnerability in- dex that reflects the abundance of prey relative to the expected abundance according to local population density, and related this index to band sharing coefficients based on analyses of minisatellites for adults in local breeding populations. The prey vulnera- bility index was positively correlated with the band sharing coefficient in both predators, even when controlling for potentially confounding variables. These findings indicate that prey species with high band sharing coefficients, and hence low levels of genetic variation, are more readily caught by avian predators. Therefore, predation may constitute a major cost of low levels of genetic variation in extant populations of prey [Current Zoology 61(1): 1-9, 2015].