期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
融合深度去噪自编码器和注意力机制的推荐算法 被引量:2
1
作者 张卫国 袁炜轩 周熙然 《计算机应用与软件》 北大核心 2023年第8期283-290,共8页
传统推荐算法无论在特征提取还是相似度计算方面仍存在数据稀疏和大量噪声数据问题,导致推荐效率不高、用户满意度低等问题,由此提出一种融合深度去噪自编码器和注意力机制的推荐算法。将深度去噪自编码器融入到基于项目相似度的协同过... 传统推荐算法无论在特征提取还是相似度计算方面仍存在数据稀疏和大量噪声数据问题,导致推荐效率不高、用户满意度低等问题,由此提出一种融合深度去噪自编码器和注意力机制的推荐算法。将深度去噪自编码器融入到基于项目相似度的协同过滤推荐算法中,同时加入了注意力机制,以惩罚活跃用户对实验结果的影响,既可以挖掘到用户与项目的线性特征又可以学习到用户与项目非线性特征。实验选取了MovieLens和Pinterest两个公开数据集,与传统推荐算法和近些年较先进算法相比,该算法能够显著提升传统推荐算法的性能,并可以缓解传统推荐算法存在的数据稀疏和冷启动问题。 展开更多
关键词 推荐算法 去噪自编码器 注意力机制 协同过滤 数据稀疏
下载PDF
基于堆叠稀疏去噪自编码器的混合入侵检测方法 被引量:3
2
作者 田世林 李焕洲 +2 位作者 唐彰国 张健 李其臻 《四川师范大学学报(自然科学版)》 CAS 2024年第4期517-527,共11页
针对高维数据场景下传统入侵检测方法特征提取困难、检测准确率低等问题,提出一种集成多种深度学习模型的混合入侵检测方法.该方法由特征降维算法和混合检测模型2部分组成.首先,利用堆叠稀疏去噪自编码器对原始数据进行特征降维,从而剔... 针对高维数据场景下传统入侵检测方法特征提取困难、检测准确率低等问题,提出一种集成多种深度学习模型的混合入侵检测方法.该方法由特征降维算法和混合检测模型2部分组成.首先,利用堆叠稀疏去噪自编码器对原始数据进行特征降维,从而剔除可能存在的噪声干扰和冗余信息.然后,采用一维卷积神经网络和双向门控循环单元学习数据中的空间维度特征和时序维度特征,将融合后的空时特征通过注意力分配不同的权重系数,从而使有用的信息得到更好表达,再经由全连接层训练后进行分类.为检验方案的可行性,在UNSW-NB15数据集上进行验证.结果表明,该模型与其他同类型入侵检测算法相比,拥有更优秀的检测性能,其准确率达到99.57%,误报率仅为0.68%. 展开更多
关键词 异常检测 注意力机制 堆叠稀疏去噪自编码器 一维卷积神经网络 双向门控循环单元
下载PDF
一种基于自编码器降维的神经卷积网络入侵检测模型
3
作者 孙敬 丁嘉伟 冯光辉 《电信科学》 北大核心 2025年第2期129-138,共10页
为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dim... 为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dimensionality reduction,IRFD),进而缓解传统机器学习入侵检测模型的低准确率问题。IRFD采用堆叠降噪稀疏自编码器策略对数据进行降维,从而提取有效特征。利用卷积注意力机制对残差网络进行改进,构建能提取关键特征的分类网络,并利用两个典型的入侵检测数据集验证IRFD的检测性能。实验结果表明,IRFD在数据集UNSW-NB15和CICIDS 2017上的准确率均达到99%以上,且F1-score分别为99.5%和99.7%。与基线模型相比,提出的IRFD在准确率、精确率和F1-score性能上均有较大提升。 展开更多
关键词 网络攻击 入侵检测模型 堆叠降噪稀疏编码器 卷积注意力机制 残差网络
下载PDF
基于多层特征嵌入的单目标跟踪算法
4
作者 才华 周鸿策 +1 位作者 付强 赵义武 《兵工学报》 北大核心 2025年第3期333-348,共16页
针对现有视觉目标跟踪方法仅使用初始帧的目标单一外观特征,导致当背景复杂或外观发生剧烈变化时跟踪失效的问题,提出一种基于多层特征嵌入的单目标跟踪算法。增强目标的外观区分度,使用稀疏内嵌注意力机制编码器,嵌入具有高实例区分度... 针对现有视觉目标跟踪方法仅使用初始帧的目标单一外观特征,导致当背景复杂或外观发生剧烈变化时跟踪失效的问题,提出一种基于多层特征嵌入的单目标跟踪算法。增强目标的外观区分度,使用稀疏内嵌注意力机制编码器,嵌入具有高实例区分度的外观特征;采用类间特征聚合编码器嵌入目标的类别信息,在外观发生变化时保持类内的紧凑性;同时将预测的历史帧跟踪框坐标转化为目标运动轨迹特征嵌入,为算法提供高置信度的时间上下文特征。研究结果表明:所提算法在OTB100基准测试中成功率和准确率分别达到71.4%和92.6%,在GOT-10K、LaSOT、TrackingNet共3个大规模公开数据上取得了鲁棒的效果,成功率分别达到64.9%、72.0%和78.7%;基于多层特征嵌入的单目标跟踪算法有效地克服了现有算法的局限,具有较好的准确性和鲁棒性。 展开更多
关键词 目标跟踪 稀疏内嵌注意力机制编码器 类间特征聚合编码器 运动特征
下载PDF
基于多任务学习的注意力机制双向GRU用于在线手写签名认证 被引量:2
5
作者 沈奇 栾方军 袁帅 《计算机科学与应用》 2022年第2期473-485,共13页
深度学习的进步极大地提高了在线签名认证(online signature verification, OSV)系统的性能,但是如何从有限的签名样本中学习具有判别性的签名特征仍然是该领域所面临的挑战。为了缓解这个问题,本研究提出了一种基于多任务学习的注意力... 深度学习的进步极大地提高了在线签名认证(online signature verification, OSV)系统的性能,但是如何从有限的签名样本中学习具有判别性的签名特征仍然是该领域所面临的挑战。为了缓解这个问题,本研究提出了一种基于多任务学习的注意力机制双向门循环单元(MT-A-BiGRU)模型来实现在线签名的认证。首先,通过基于注意力机制的双向门循环单元(A-BiGRU)模型来实现序列特征的有监督表征学习,并引入深度度量学习任务来充分挖掘序列特征的潜在表示。在此基础上,将稀疏自动编码器压缩后的全局特征与A-BiGRU模型所提取的特征进行融合,以实现特征信息的互补。最后,本文提出一种基于多任务学习的训练方法,进一步提高了OSV系统的准确率。所提出的方法在SVC-2004-task2数据集中达到了2.16%的等错误率和96.88%的准确率,实验结果表明所提出的方法够有效地提高OSV系统的认证精度。 展开更多
关键词 在线签名认证 多任务学习 注意力机制 双向门循环单元 稀疏自动编码器
下载PDF
基于融合模型的网络安全态势感知方法 被引量:2
6
作者 郭尚伟 刘树峰 +3 位作者 李子铭 欧阳德强 王宁 向涛 《计算机工程》 CAS CSCD 北大核心 2024年第11期1-9,共9页
伴随着网络技术的飞速发展,网络安全面临的风险也日益增加,网络攻击呈现复杂化、多样化的特征,给现有网络攻击应对措施带来了巨大挑战。态势感知技术作为一种新兴概念,为网络安全领域带来了新的思路。针对现有网络安全态势感知方法存在... 伴随着网络技术的飞速发展,网络安全面临的风险也日益增加,网络攻击呈现复杂化、多样化的特征,给现有网络攻击应对措施带来了巨大挑战。态势感知技术作为一种新兴概念,为网络安全领域带来了新的思路。针对现有网络安全态势感知方法存在数据特征提取及较长时间序列数据处理能力不足的问题,提出一种融合堆栈稀疏自编码器(SSAE)、卷积神经网络(CNN)、双向门控循环单元(BiGRU)和注意力机制(AM)的模型。通过SSAE和CNN提取数据特征,利用AM强化BiGRU对关键信息的关注度,实现对异常流量的攻击类别判定,并结合网络安全态势量化指标,对网络安全态势进行量化评分并划分等级。实验结果表明,融合模型在各项指标上均优于传统深度学习模型,能够准确感知网络态势。 展开更多
关键词 态势感知 威胁检测 堆叠稀疏编码器 卷积神经网络 双向门控循环单元 注意力机制
下载PDF
基于双向LSTM模型的流量异常检测方法 被引量:1
7
作者 赵瑜 霍永华 +1 位作者 黄伟 杨文芳 《无线电工程》 北大核心 2023年第7期1712-1718,共7页
聚焦传统基于统计、信息论和机器学习的异常流量检测方法存在依赖专家经验、准确度较低、误报率高和泛化能力不足等问题,提出了一种基于堆叠稀疏自编码器(Stacked Sparse Auto-Encoder,SSAE)和双向LSTM模型的异常流量检测方法,基于SSAE... 聚焦传统基于统计、信息论和机器学习的异常流量检测方法存在依赖专家经验、准确度较低、误报率高和泛化能力不足等问题,提出了一种基于堆叠稀疏自编码器(Stacked Sparse Auto-Encoder,SSAE)和双向LSTM模型的异常流量检测方法,基于SSAE进行流量数据特征提取,改变了之前全部依赖专家知识数据库的做法,从根本上避免人的主观性,提高流量数据的真实性和客观性;将双向LSTM模型提取的局部时序信息和使用多头注意力机制提取的全局信息相融合,详细阐述了模型构建过程和算法设计核心步骤;通过设计典型场景,选取数据集和准确率、召回率以及F1评分评估指标,验证所设计模型算法的精准度和鲁棒性。实验结果表明,提高了异常流量的检测精度,增强了模型泛化能力,对异常攻击和资源优化调控具有辅助决策作用。 展开更多
关键词 堆叠稀疏编码器 多头注意力机制 双向LSTM 流量异常检测
下载PDF
基于SA-SAE的配电网故障分类方法 被引量:2
8
作者 朱方博 张俊林 +3 位作者 王瑞驰 汤智谦 倪良华 吕干云 《电气自动化》 2023年第2期100-102,共3页
准确识别故障类型是配电网故障处理的首要任务。基于特征融合和自注意力机制,提出了一种具有强抗噪声能力和高泛化水平的配电网故障分类方法。利用S变换构造故障信号的时频矩阵,对其进行奇异值分解提取频域特征量,与表征波形形态特征相... 准确识别故障类型是配电网故障处理的首要任务。基于特征融合和自注意力机制,提出了一种具有强抗噪声能力和高泛化水平的配电网故障分类方法。利用S变换构造故障信号的时频矩阵,对其进行奇异值分解提取频域特征量,与表征波形形态特征相关性的时域特征量相融合组成时频域特征量。将特征量输入稀疏自动编码器,引入自注意力机制提高特征提取能力,最终完成故障分类识别。仿真结果表明,所提方法在不同故障位置、故障相角和过渡电阻条件下可实现对配电网故障类型的较高正确率识别,且在噪声干扰、中性点运行方式发生变化情况下具有良好的应用适应性。 展开更多
关键词 配电网 故障分类 S变换 奇异值分解 注意力机制 稀疏自动编码器
下载PDF
基于深度加权特征学习的网络安全态势评估 被引量:1
9
作者 杨宏宇 张梓锌 张良 《信息安全学报》 CSCD 2022年第4期32-43,共12页
计算机网络高速发展的同时也带来了许多的安全问题,对网络安全进行有效的网络安全态势评估对于掌握网络整体的状态并帮助管理人员全面掌握整体态势具有重要意义。然而,现有的网络安全态势评估方法存在特征要素提取困难、准确率低、时效... 计算机网络高速发展的同时也带来了许多的安全问题,对网络安全进行有效的网络安全态势评估对于掌握网络整体的状态并帮助管理人员全面掌握整体态势具有重要意义。然而,现有的网络安全态势评估方法存在特征要素提取困难、准确率低、时效性差的问题。针对这些问题,提出一种面向网络威胁检测的基于深度加权特征学习的网络安全态势评估方法。首先,考虑到单个稀疏自动编码器进行特征提取时无法很好的拟合不同攻击的分布,从而影响威胁检测准确率的缺点,构建一个基于并行稀疏自动编码器的特征提取器提取网络流量中的关键信息,并将其与数据原始特征进行融合。其次,为了更多的关注网络流量中的关键信息,采用注意力机制改进双向门控循环单元网络,对网络中的威胁进行检测并统计每种攻击类型的发生次数以及误报消减矩阵。然后,根据误报消减矩阵修正每种攻击类型的发生次数,并结合威胁严重因子计算得到威胁严重度。最后,根据威胁严重度和每种攻击类型的威胁影响度确定网络安全态势值以获取网络安全态势。本文选取NSL-KDD数据集进行实验验证,实验结果显示本文方法在测试集上达到了82.13%的最高准确率,召回率、F1值分别达到了83.36%、82.74%。此外,通过消融实验进一步验证了所提出的并行稀疏自动编码器提取特征和注意力机制加权特征两种改进方法的有效性。与经典态势评估方法SVM、LSTM、BiGRU、AEDNN等的对比实验也证明,该方法能够高效、全面地评估网络安全的整体态势。 展开更多
关键词 并行稀疏自动编码器 注意力机制 威胁严重因子 误报消减矩阵 网络安全态势评估
下载PDF
结合密集残差结构和多尺度剪枝的点云压缩网络 被引量:3
10
作者 朱威 张雨航 +2 位作者 应悦 郑雅羽 何德峰 《中国图象图形学报》 CSCD 北大核心 2023年第7期2105-2119,共15页
目的点云是一种重要的三维数据表示形式,已在无人驾驶、虚拟现实、三维测量等领域得到了应用。由于点云具有分辨率高的特性,数据传输需要消耗大量的网络带宽和存储资源,严重阻碍了进一步推广。为此,在深度学习的点云自编码器压缩框架基... 目的点云是一种重要的三维数据表示形式,已在无人驾驶、虚拟现实、三维测量等领域得到了应用。由于点云具有分辨率高的特性,数据传输需要消耗大量的网络带宽和存储资源,严重阻碍了进一步推广。为此,在深度学习的点云自编码器压缩框架基础上,提出一种结合密集残差结构和多尺度剪枝的点云压缩网络,实现了对点云几何信息和颜色信息的高效压缩。方法针对点云的稀疏化特点以及传统体素网格表示点云时分辨率不足的问题,采用稀疏张量作为点云的表示方法,并使用稀疏卷积和子流形卷积取代常规卷积提取点云特征;为了捕获压缩过程中高维信息的依赖性,将密集残差结构和通道注意力机制引入到点云特征提取模块;为了补偿采样过程的特征损失以及减少模型训练的动态内存占用,自编码器采用多尺度渐进式结构,并在其解码器不同尺度的上采样层之后加入剪枝层。为了扩展本文网络的适用范围,设计了基于几何信息的点云颜色压缩方法,以保留点云全局颜色特征。结果针对几何信息压缩,本文网络在MVUB(Microsoft voxelized upper bodies)、8iVFB(8i voxelized full bodies)和Owlii(Owlii dynamic human mesh sequence dataset)3个数据集上与其他5种方法进行比较。相对MPEG(moving picture experts group)提出的点云压缩标准V-PCC(video-based point cloud compression),BD-Rate(bjontegaard delta rate)分别增加了41%、54%和33%。本文网络的编码运行时间与G-PCC(geometry-based point cloud compression)相当,仅为V-PCC的2.8%。针对颜色信息压缩,本文网络在低比特率下的YUV-PSNR(YUV peak signal to noise ratio)性能优于G-PCC中基于八叉树的颜色压缩方法。结论本文网络在几何压缩和颜色压缩上优于主流的点云压缩方法,能在速率较小的情况下保留更多原始点云信息。 展开更多
关键词 深度学习 点云压缩 编码器 稀疏卷积 点云注意力机制 密集残差结构 多尺度剪枝
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部