准确、快速的海底电缆故障分类是海上风电场运维的重要一环。该文提出一种基于改进稀疏表示的海上风电场交流海底电缆短路故障分类方法,该方法综合利用故障发生后半周波电流信号的时域特征作为故障分类依据,采用K次奇异值分解(K singula...准确、快速的海底电缆故障分类是海上风电场运维的重要一环。该文提出一种基于改进稀疏表示的海上风电场交流海底电缆短路故障分类方法,该方法综合利用故障发生后半周波电流信号的时域特征作为故障分类依据,采用K次奇异值分解(K singular value decomposition,K-SVD)字典学习算法对各类故障信号的特征信息进行学习,构造出准确匹配各类故障本质特征的过完备字典。在学习字典的基础上,提出一种基于混合交替方向乘子法(mixed alternating direction method of multipliers,M-ADMM)的改进稀疏分解算法将故障信号分解为过完备字典与稀疏向量的乘积,结合基于稀疏表示的分类方法实现对故障重构信号的分类。仿真研究结果表明,该改进稀疏分解算法具有精确的信号重构、降噪效果。所提出的故障分类方法无需人工构造故障信号特征,避免了多工况故障信号特征筛选、时频域变换等繁琐流程。与SVM、CNN、LSTM等智能分类算法的对比结果表明,该方法具有较强自适应性的同时不易受故障时刻、故障位置影响且噪声鲁棒性强,可以准确识别海底电缆场景下低阻短路故障类型。展开更多
近年来,稀疏表示分类(Sparse Representation Based Classification,SRC)方法在人脸识别中受到越来越多的关注。原始SRC方法使用所有的训练样本组成字典矩阵,当训练样本比较多时,稀疏系数的求解会变得非常耗时。为了解决这一问题,提出...近年来,稀疏表示分类(Sparse Representation Based Classification,SRC)方法在人脸识别中受到越来越多的关注。原始SRC方法使用所有的训练样本组成字典矩阵,当训练样本比较多时,稀疏系数的求解会变得非常耗时。为了解决这一问题,提出一种新的局部稀疏表示分类(Local SRC,LSRC)方法。该方法针对每个测试样本,根据测试样本和训练样本稀疏系数之间的相似性来选择部分训练样本,由这些训练样本组成字典,然后在这个字典上对测试样本进行稀疏分解。该方法性能相比于原始LSRC方法更稳定。在ORL、Yale和AR人脸库上的实验结果表明,该方法的效果优于SRC和LSRC。展开更多
文摘准确、快速的海底电缆故障分类是海上风电场运维的重要一环。该文提出一种基于改进稀疏表示的海上风电场交流海底电缆短路故障分类方法,该方法综合利用故障发生后半周波电流信号的时域特征作为故障分类依据,采用K次奇异值分解(K singular value decomposition,K-SVD)字典学习算法对各类故障信号的特征信息进行学习,构造出准确匹配各类故障本质特征的过完备字典。在学习字典的基础上,提出一种基于混合交替方向乘子法(mixed alternating direction method of multipliers,M-ADMM)的改进稀疏分解算法将故障信号分解为过完备字典与稀疏向量的乘积,结合基于稀疏表示的分类方法实现对故障重构信号的分类。仿真研究结果表明,该改进稀疏分解算法具有精确的信号重构、降噪效果。所提出的故障分类方法无需人工构造故障信号特征,避免了多工况故障信号特征筛选、时频域变换等繁琐流程。与SVM、CNN、LSTM等智能分类算法的对比结果表明,该方法具有较强自适应性的同时不易受故障时刻、故障位置影响且噪声鲁棒性强,可以准确识别海底电缆场景下低阻短路故障类型。
文摘近年来,稀疏表示分类(Sparse Representation Based Classification,SRC)方法在人脸识别中受到越来越多的关注。原始SRC方法使用所有的训练样本组成字典矩阵,当训练样本比较多时,稀疏系数的求解会变得非常耗时。为了解决这一问题,提出一种新的局部稀疏表示分类(Local SRC,LSRC)方法。该方法针对每个测试样本,根据测试样本和训练样本稀疏系数之间的相似性来选择部分训练样本,由这些训练样本组成字典,然后在这个字典上对测试样本进行稀疏分解。该方法性能相比于原始LSRC方法更稳定。在ORL、Yale和AR人脸库上的实验结果表明,该方法的效果优于SRC和LSRC。