期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于子编码和全编码联合惩罚的稀疏表示字典学习方法 被引量:1
1
作者 董俊健 毛启容 +1 位作者 胡素黎 詹永照 《计算机科学》 CSCD 北大核心 2014年第10期122-127,共6页
针对目前稀疏表示字典学习的惩罚函数版本不一且各有优势的问题,提出基于子编码和全编码联合惩罚的稀疏表示字典学习方法,该方法在字典学习的目标函数中同时加入子编码惩罚函数和全编码惩罚函数。子编码惩罚函数使得学习后的字典在稀疏... 针对目前稀疏表示字典学习的惩罚函数版本不一且各有优势的问题,提出基于子编码和全编码联合惩罚的稀疏表示字典学习方法,该方法在字典学习的目标函数中同时加入子编码惩罚函数和全编码惩罚函数。子编码惩罚函数使得学习后的字典在稀疏表示识别时可以用子字典的重构误差和子字典上编码系数的大小来识别,全编码惩罚函数则能直接利用整个字典上的编码系数来识别,通过联合这两个惩罚函数可以获得非常好的识别效果。为了验证所提方法的有效性,在语音情感库和人脸库上与最新的基于字典学习的稀疏表示识别方法 DKSVD和FDDL进行对比,并与著名的识别方法SVM和SRC进行比较,实验结果显示所提方法具有更好的识别性能。 展开更多
关键词 稀疏表示识别 结构化字典学习 惩罚函数 稀疏编码 语音情感识别 人脸识别
下载PDF
特征空间中的拓展稀疏人脸识别 被引量:2
2
作者 张泓 范自柱 +1 位作者 王松 李争名 《重庆大学学报》 EI CAS CSCD 北大核心 2020年第11期21-28,共8页
基于稀疏表示分类(SRC,sparse representation for classification)是近年来模式识别领域中备受关注的一个研究热点。当每类训练样本较少时,SRC的识别效果往往不理想。为解决此问题,人们提出了拓展的稀疏表示分类算法。它引入了训练样... 基于稀疏表示分类(SRC,sparse representation for classification)是近年来模式识别领域中备受关注的一个研究热点。当每类训练样本较少时,SRC的识别效果往往不理想。为解决此问题,人们提出了拓展的稀疏表示分类算法。它引入了训练样本的类内变量矩阵,来补充每类训练样本信息。但是,该方法很难获取普遍存在于复杂数据如图像中的非线性信息。为此,提出了特征空间中的拓展稀疏人脸识别算法。该算法将样本集非线性映射到新的特征空间中,计算每个训练样本在表示测试样本时所做的贡献。根据贡献大小,给每个训练样本赋予一定的权重。同时,利用类内变量矩阵,共同表示测试样本。实验表明所提出的算法优于其它经典稀疏表示分类算法。 展开更多
关键词 人脸识别 拓展的稀疏表示识别 特征空间 模式识别 稀疏分类表示
下载PDF
基于字典学习的核稀疏表示人脸识别方法 被引量:36
3
作者 朱杰 杨万扣 唐振民 《模式识别与人工智能》 EI CSCD 北大核心 2012年第5期859-864,共6页
受Metafaces方法的启发,提出一种基于字典学习方法的核稀疏表示方法并成功应用于人脸识别.首先,采用核技术将稀疏表示方法推广到高维空间得到核稀疏表示方法.其次,借鉴Metaface字典学习方法,进行字典学习得到一组核基向量构成核稀疏表... 受Metafaces方法的启发,提出一种基于字典学习方法的核稀疏表示方法并成功应用于人脸识别.首先,采用核技术将稀疏表示方法推广到高维空间得到核稀疏表示方法.其次,借鉴Metaface字典学习方法,进行字典学习得到一组核基向量构成核稀疏表示字典.最后,利用学习得到的核字典基重构样本,并根据样本与重构样本之间的残差最小原则对人脸图像进行分类.在AR、ORL和Yale人脸数据库上的实验表明该方法的良好识别性能. 展开更多
关键词 Metaface学习 核技术 稀疏表示 人脸识别
原文传递
An adaptive electrical resistance tomography sensor with flow pattern recognition capability 被引量:4
4
作者 WANG Pai LI Yang-bo +2 位作者 WANG Mei QIN Xue-bin LIU Lang 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第3期612-622,共11页
The all traditional electrical resistance tomography (ERT) sensors have a static structure, which cannot satisfy the intelligent requirements for adaptive optimization to ERT sensors that is subject to flow pattern ch... The all traditional electrical resistance tomography (ERT) sensors have a static structure, which cannot satisfy the intelligent requirements for adaptive optimization to ERT sensors that is subject to flow pattern changes during the real-time detection of two-phase flow. In view of this problem, an adaptive ERT sensor with a dynamic structure is proposed. The electrodes of the ERT sensor are arranged in an array structure, the flow pattern recognition technique is introduced into the ERT sensor design and accordingly an ERT flow pattern recognition method based on signal sparsity is proposed. This method uses the sparse representation of the signal to express the sampling voltage of the ERT system as a sparse combination and find its sparse solution to achieve the classification of different flow patterns. With the introduction of flow identification information, the sensor has an intelligent function of adaptively and dynamically adapting the sensor structure according to the real-time flow pattern change. The experimental results show that the sensor can automatically identify four typical flow patterns: core flow, bubble flow, laminar flow and circulation flow with recognition rates of 91%, 93%, 90% and 88% respectively. For different flow patterns, the dynamically optimized sensor can significantly improve the quality of ERT image reconstruction. 展开更多
关键词 electrical resistance tomography adaptive sensor sparse representation flow pattern identification
下载PDF
Discriminant embedding by sparse representation and nonparametric discriminant analysis for face recognition
5
作者 杜春 周石琳 +2 位作者 孙即祥 孙浩 王亮亮 《Journal of Central South University》 SCIE EI CAS 2013年第12期3564-3572,共9页
A novel supervised dimensionality reduction algorithm, named discriminant embedding by sparse representation and nonparametric discriminant analysis(DESN), was proposed for face recognition. Within the framework of DE... A novel supervised dimensionality reduction algorithm, named discriminant embedding by sparse representation and nonparametric discriminant analysis(DESN), was proposed for face recognition. Within the framework of DESN, the sparse local scatter and multi-class nonparametric between-class scatter were exploited for within-class compactness and between-class separability description, respectively. These descriptions, inspired by sparse representation theory and nonparametric technique, are more discriminative in dealing with complex-distributed data. Furthermore, DESN seeks for the optimal projection matrix by simultaneously maximizing the nonparametric between-class scatter and minimizing the sparse local scatter. The use of Fisher discriminant analysis further boosts the discriminating power of DESN. The proposed DESN was applied to data visualization and face recognition tasks, and was tested extensively on the Wine, ORL, Yale and Extended Yale B databases. Experimental results show that DESN is helpful to visualize the structure of high-dimensional data sets, and the average face recognition rate of DESN is about 9.4%, higher than that of other algorithms. 展开更多
关键词 dimensionality reduction sparse representation nonparametric discriminant analysis
下载PDF
A new discriminative sparse parameter classifier with iterative removal for face recognition
6
作者 TANG De-yan ZHOU Si-wang +2 位作者 LUO Meng-ru CHEN Hao-wen TANG Hui 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第4期1226-1238,共13页
Face recognition has been widely used and developed rapidly in recent years.The methods based on sparse representation have made great breakthroughs,and collaborative representation-based classification(CRC)is the typ... Face recognition has been widely used and developed rapidly in recent years.The methods based on sparse representation have made great breakthroughs,and collaborative representation-based classification(CRC)is the typical representative.However,CRC cannot distinguish similar samples well,leading to a wrong classification easily.As an improved method based on CRC,the two-phase test sample sparse representation(TPTSSR)removes the samples that make little contribution to the representation of the testing sample.Nevertheless,only one removal is not sufficient,since some useless samples may still be retained,along with some useful samples maybe being removed randomly.In this work,a novel classifier,called discriminative sparse parameter(DSP)classifier with iterative removal,is proposed for face recognition.The proposed DSP classifier utilizes sparse parameter to measure the representation ability of training samples straight-forward.Moreover,to avoid some useful samples being removed randomly with only one removal,DSP classifier removes most uncorrelated samples gradually with iterations.Extensive experiments on different typical poses,expressions and noisy face datasets are conducted to assess the performance of the proposed DSP classifier.The experimental results demonstrate that DSP classifier achieves a better recognition rate than the well-known SRC,CRC,RRC,RCR,SRMVS,RFSR and TPTSSR classifiers for face recognition in various situations. 展开更多
关键词 collaborative representation-based classification discriminative sparse parameter classifier face recognition iterative removal sparse representation two-phase test sample sparse representation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部