文摘多Agent系统(Multi-Agent System,MAS)是人工智能领域的一个非常活跃的研究方向。在多Agent系统中,由于Agent之间信念的差异,会不可避免地造成行动冲突。Sakama等提出的严格协调方法只适用于各Agent之间有共同信念的情境,当不存在共同信念时,此协调方法无解。针对该问题,文中提出了一种基于可能回答集程序(Possibilistic Answer Set Programming,PASP)的信念协调方法。首先,针对各Agent的不同信念集,基于加权定量的方法计算PASP的回答集相对Agent信念的满足度,以此来弱化某些信念,并且引入缺省决策理论推理得到Agent信念协调的一致解。然后,根据一致解建立一致的协调程序,将其作为Agent共同认同的背景知识库。最后,以dlv求解器为基础实现了多Agent信念协调算法,使Agent之间可以自主完成信念协调。文中以旅游推荐系统为例,说明该算法能够打破严格协调方法的局限,有效解决各Agent之间无共同信念时的协调问题。