在高温状态下,镍基单晶超合金的变形、损伤及断裂分析中,孔洞的长大都起着主要的作用。本研究进行了系列的蠕变、疲劳及热机械疲劳(TMF)试验。对试件的断面进行的 SEM 观察表明,所有的断面都是有许多小断面构成,在断面的中心,至少有一...在高温状态下,镍基单晶超合金的变形、损伤及断裂分析中,孔洞的长大都起着主要的作用。本研究进行了系列的蠕变、疲劳及热机械疲劳(TMF)试验。对试件的断面进行的 SEM 观察表明,所有的断面都是有许多小断面构成,在断面的中心,至少有一个孔洞。孔洞的尺寸与加载的条件相关。使用晶体塑性有限元程序对单胞模型进行分析,模拟孔洞的长大规律。给出了蠕变和弹塑性两种条件下的模拟结果及不同的晶体取向对孔穴长大的影响结果。对孔洞长大的有限元分析有助于对实验结果的理解。展开更多
The changes of three components of aerodynamic force were discussed with the attack angle conversion for three kinds of section models. Based on the project of Shanghai Yangtze River Bridge, the wind tunnel test was c...The changes of three components of aerodynamic force were discussed with the attack angle conversion for three kinds of section models. Based on the project of Shanghai Yangtze River Bridge, the wind tunnel test was conducted to obtain its three components of aerodynamic force including 75 conditions of the construction stage, the bridge without vehicles and the bridge with vehicles from - 12 degrees to + 12 degrees. For the bridge with vehicles, the drag force coefficient and the absolute value of both lift coefficient and moment coefficient were decreased by the vehicles. The test resuh shows that the bridge railing and vehicles have much influence on the three components of aerodynamic force of the vehicle-bridge system for Shanghai Yangtze River Bridge.展开更多
基金Natural Science Foundation of China (50005016, 50375124), Natural Science Foundation of Shaanxi Province and China aviation foundation (00B53010, 03B53003) as well as the Yangtze River foundation.
文摘在高温状态下,镍基单晶超合金的变形、损伤及断裂分析中,孔洞的长大都起着主要的作用。本研究进行了系列的蠕变、疲劳及热机械疲劳(TMF)试验。对试件的断面进行的 SEM 观察表明,所有的断面都是有许多小断面构成,在断面的中心,至少有一个孔洞。孔洞的尺寸与加载的条件相关。使用晶体塑性有限元程序对单胞模型进行分析,模拟孔洞的长大规律。给出了蠕变和弹塑性两种条件下的模拟结果及不同的晶体取向对孔穴长大的影响结果。对孔洞长大的有限元分析有助于对实验结果的理解。
基金Sponsored by the Key Project of the National Natural Science Foundation of China (Grant No.90715039)
文摘The changes of three components of aerodynamic force were discussed with the attack angle conversion for three kinds of section models. Based on the project of Shanghai Yangtze River Bridge, the wind tunnel test was conducted to obtain its three components of aerodynamic force including 75 conditions of the construction stage, the bridge without vehicles and the bridge with vehicles from - 12 degrees to + 12 degrees. For the bridge with vehicles, the drag force coefficient and the absolute value of both lift coefficient and moment coefficient were decreased by the vehicles. The test resuh shows that the bridge railing and vehicles have much influence on the three components of aerodynamic force of the vehicle-bridge system for Shanghai Yangtze River Bridge.