期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
基于算数优化算法的VMD-BiLSTM模型的松土装置工况识别
1
作者 董兆森 张佳喜 +3 位作者 蒋永新 张丽 罗文杰 高泽斌 《中国农机化学报》 北大核心 2024年第11期21-27,共7页
当对滚筒式残膜回收机的关键装置松土齿耙的应力应变进行实时监测时,所获得应力应变信号易受外部环境的干扰,难以从信号中识别壅土故障。针对该问题,通过ANSYS分析确定松土齿耙的应变监测部位,利用应变片对松土齿耙不同工况进行应变监... 当对滚筒式残膜回收机的关键装置松土齿耙的应力应变进行实时监测时,所获得应力应变信号易受外部环境的干扰,难以从信号中识别壅土故障。针对该问题,通过ANSYS分析确定松土齿耙的应变监测部位,利用应变片对松土齿耙不同工况进行应变监测试验。基于监测数据,提出一种基于算数优化算法(AOA)的变分模态分解(VMD)—双向长短期记忆网络(BiLSTM)神经网络模型工况识别方法。首先,利用AOA对VMD模态分量的k值和惩罚因子α进行参数优化;然后,使用VMD对松土齿耙应变信号进行自适应分解;最后,根据皮尔逊系数将分解并重构后的信号输入BiLSTM网络中进行特征学习,实现松土齿耙的工况识别。结果表明,该方法实现对松土齿耙空载、正常工作、轻度壅土、严重壅土4种工况精准识别,且效果优于VMD-LSTM、BiLSTM、LSTM神经网络模型,识别准确率达到99.1%以上,有效提高松土齿耙工况识别的准确率。 展开更多
关键词 松土装置 工况识别 算数优化算法 变分模态分解 双向长短期记忆网络
下载PDF
自适应分组融合改进算数优化算法及应用
2
作者 刘成汉 何庆 《计算机科学》 CSCD 北大核心 2022年第10期118-125,共8页
针对算数优化算法(Arithmetic Optimization Algorithm, AOA)寻优速度慢、精度低和易受局部极值点影响的问题,提出了一种自适应分组融合改进算数优化算法(Adaptive Grouping Fusion Improved Arithmetic Optimization Algorithm, AG-AOA... 针对算数优化算法(Arithmetic Optimization Algorithm, AOA)寻优速度慢、精度低和易受局部极值点影响的问题,提出了一种自适应分组融合改进算数优化算法(Adaptive Grouping Fusion Improved Arithmetic Optimization Algorithm, AG-AOA)。首先,采用Halton序列初始化个体位置,提高迭代初期算法的多样性;然后,引入自适应分组策略对种群进行分组操作,根据适应度值大小把个体自适应分为优势组、均势组和劣势组;最后,对各组个体分别采用教与学优化策略、精英反向学习策略和振荡扰动算子进行位置更新,以提高AOA的搜索能力,减小局部极值点对算法的影响。通过包含各种复杂程度的测试函数对AG-AOA的性能进行验证,包括基准测试函数、统计显著性的Wilcoxon秩和检验以及部分CEC2014测试函数。将AG-AOA应用于两个实际工程优化问题,并将所得结果与其他元启发式算法进行了比较和分析,验证了AG-AOA的优越性。 展开更多
关键词 算数优化算法 Halton序列 自适应分组 教与学优化 精英反向学习 振荡扰动算子
下载PDF
非线性自适应分组灰狼算法
3
作者 马威 王巍 曹颖 《计算机仿真》 2024年第6期441-447,587,共8页
针对灰狼算法(grey wolf optimization, GWO)收敛速度慢、易陷入局部最优的问题,提出了一种非线性自适应分组灰狼算法(Nonlinear Adaptive Grouping Grey Wolf Optimization, NAGGWO)。首先,提出CPM映射生成初始种群,提高种群多样性;随... 针对灰狼算法(grey wolf optimization, GWO)收敛速度慢、易陷入局部最优的问题,提出了一种非线性自适应分组灰狼算法(Nonlinear Adaptive Grouping Grey Wolf Optimization, NAGGWO)。首先,提出CPM映射生成初始种群,提高种群多样性;随后,提出一种“S”型非线性控制参数用来平衡算法的开采与探索能力;最后,采用自适应分组策略将狼群分为捕食组、游荡组和搜索组,对不同组灰狼个体分别采用改进的差分进化策略、随机反向学习策略以及算数优化算法(Arithmetic Optimization Algorithm, AOA)中的乘除算子进行位置更新,以改善GWO的收敛速度及精度。通过选取12个测试函数对NAGGWO进行仿真,结果表明在相同条件下,NAGGWO在求解低维问题和高维问题中相比其它算法都具有显著优势。 展开更多
关键词 灰狼优化算法 自适应分组 算数优化算法
下载PDF
基于ATVCF与IAOA-SDAE的变转速齿轮故障识别
4
作者 陈向民 李博 +3 位作者 韩梦茹 张亢 姚鹏 舒文伊 《动力工程学报》 CAS CSCD 北大核心 2024年第11期1723-1732,共10页
为提高变转速工况下齿轮故障识别的准确率,提出了一种基于自适应时变梳状滤波(ATVCF)与改进算数优化算法(IAOA)优化堆叠降噪自编码器(SDAE)的变转速齿轮故障识别方法。针对变转速齿轮振动信号的降噪,利用ATVCF方法预处理数据,在过滤噪... 为提高变转速工况下齿轮故障识别的准确率,提出了一种基于自适应时变梳状滤波(ATVCF)与改进算数优化算法(IAOA)优化堆叠降噪自编码器(SDAE)的变转速齿轮故障识别方法。针对变转速齿轮振动信号的降噪,利用ATVCF方法预处理数据,在过滤噪声成分的同时保留有效信号;针对算数优化算法(AOA)在全局搜索和局部开发时存在的不足,引入余弦调控因子来改进算法中的数学优化器加速函数(MOA),以提升其全局搜索能力和局部开发充分寻优能力,并引入随机反向学习策略(ROBL)以增加算法的种群多样性,提升其搜索能力;此外,通过对IAOA-SDAE模型的参数寻优来确保模型的故障识别精度和稳定性。对变速齿轮振动测试数据的分析验证了所提方法在变速齿轮故障智能识别方面的有效性和优越性。 展开更多
关键词 变转速工况 齿轮故障诊断 自适应时变梳状滤波 算数优化算法 堆叠降噪自编码器
下载PDF
基于红外的TPA和IAOA BiLSTM电路芯片故障诊断
5
作者 王力 朱猛 马江燕 《激光与红外》 CAS CSCD 北大核心 2024年第4期574-583,共10页
为了提高电路芯片故障诊断准确率,超参数设置的效率以及特征提取效率,提出一种基于时间模式注意力机制(TPA)的改进算数优化算法(IAOA)优化双向长短期记忆网络(BiLSTM)的电路故障诊断方法。首先,利用IAOA搜寻BiLSTM的最优超参数组合,提... 为了提高电路芯片故障诊断准确率,超参数设置的效率以及特征提取效率,提出一种基于时间模式注意力机制(TPA)的改进算数优化算法(IAOA)优化双向长短期记忆网络(BiLSTM)的电路故障诊断方法。首先,利用IAOA搜寻BiLSTM的最优超参数组合,提高模型诊断精度;然后使用TPA提取重要特征并分配权重,改善模型特征提取能力;最后,将红外摄像仪采集的红外温度数据输入到最优诊断模型中,实现电路芯片故障诊断。实验采用0~30 V可调稳压电源电路进行验证。结果表明,该模型对电路芯片故障诊断准确率高达9827,可实现对电路芯片的高准确率故障诊断。 展开更多
关键词 红外技术 芯片故障诊断 双向长短期记忆网络 算数优化算法 时间模式注意力机制
下载PDF
Lake Eutrophic Evaluation Based on Bee Immune Evolutionary Algorithm 被引量:1
6
作者 党媛 李祚泳 邹艳玲 《Agricultural Science & Technology》 CAS 2010年第4期156-158,188,共4页
In order to establish the lake eutrophic evaluation model for multiple indices,based on the gauge transformation,an index formula in the form of a logarithmic power function was proposed to design an eutrophic evaluat... In order to establish the lake eutrophic evaluation model for multiple indices,based on the gauge transformation,an index formula in the form of a logarithmic power function was proposed to design an eutrophic evaluation model for the " normalized values" of multi-indexes.The parameters in the formula were also optimized by bee immune evolutionary algorithm(BEIEA).The universal index formula was suitable to multiindices items for eutrophic evaluation.At the same time,the formula was applied to practical eutrophic evaluations in 10 regions of Dong Lake.The evaluation results were coincident with those obtained from the power function of weighted sums and also with actual conditions.It was shown that the bee immune evolutionary algorithm was suitable to the parameter optimization in the eutrophic evaluation model. 展开更多
关键词 LAKE Eutrophic evaluation Bee algorithm Bee immune evolutionary algorithm Parameter optimization
下载PDF
Design and optimization in multiphase homing trajectory of parafoil system 被引量:2
7
作者 高海涛 陶金 +1 位作者 孙青林 陈增强 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第6期1416-1426,共11页
In order to realize safe and accurate homing of parafoil system,a multiphase homing trajectory planning scheme is proposed according to the maneuverability and basic flight characteristics of the vehicle.In this scena... In order to realize safe and accurate homing of parafoil system,a multiphase homing trajectory planning scheme is proposed according to the maneuverability and basic flight characteristics of the vehicle.In this scenario,on the basis of geometric relationship of each phase trajectory,the problem of trajectory planning is transformed to parameter optimizing,and then auxiliary population-based quantum differential evolution algorithm(AP-QDEA)is applied as a tool to optimize the objective function,and the design parameters of the whole homing trajectory are obtained.The proposed AP-QDEA combines the strengths of differential evolution algorithm(DEA)and quantum evolution algorithm(QEA),and the notion of auxiliary population is introduced into the proposed algorithm to improve the searching precision and speed.The simulation results show that the proposed AP-QDEA is proven its superior in both effectiveness and efficiency by solving a set of benchmark problems,and the multiphase homing scheme can fulfill the requirement of fixed-points and upwind landing in the process of homing which is simple in control and facile in practice as well. 展开更多
关键词 parafoil system multiphase homing trajectory design and optimization differential evolution algorithm (DEA) quantum evolution algorithm (QEA) auxiliary population
下载PDF
A survey of numerical algorithms for trajectory optimization of flight vehicles 被引量:32
8
作者 HUANG GuoQiang LU YuPing NAN Ying 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第9期2538-2560,共23页
As one of the important components of computational flight mechanics and control,numerical algorithms of trajectory optimization for flight vehicles are currently studied by many researchers in aerospace engineering t... As one of the important components of computational flight mechanics and control,numerical algorithms of trajectory optimization for flight vehicles are currently studied by many researchers in aerospace engineering to completely solve these difficult problems,but few papers on the survey of this research field have been published recently.Based on the investigation of more than one hundred literatures,considering the application perspectives of computational flight mechanics and recent developments of trajectory optimization,the numerical algorithms of trajectory optimizations for aerospace vehicles are summarized and systematically analyzed.This paper summarized the basic principle,characteristics and application for all kinds of current trajectory optimization algorithms;and introduced some new methods and theories appearing in recent years.Finally,collaborative trajectory optimization for many flight vehicles,and hypersonic vehicle trajectory optimization were mainly reviewed in this paper.In the conclusion of this paper,the future research properties are presented regarding to numerical algorithms of trajectory optimization and control for flight vehicles as follows:collaboration and antagonization for many flight vehicles and multiple targets,global,real-time online,high accuracy of 7-D trajectory,considering all kinds of unknown random disturbances in trajectory optimization,and so on. 展开更多
关键词 computational flight dynamics flight trajectory optimization numerical algorithms SURVEY global optimization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部