针对多类不平衡数据分类准确率低的问题,提出一种基于空间扩展的支持向量机学习算法(support vector machine algorithm based on space spreading,SS-SVM)。根据空间扩展原理,在多维欧式空间中通过空间扩展对少类数据进行上采样,使其...针对多类不平衡数据分类准确率低的问题,提出一种基于空间扩展的支持向量机学习算法(support vector machine algorithm based on space spreading,SS-SVM)。根据空间扩展原理,在多维欧式空间中通过空间扩展对少类数据进行上采样,使其处理数据时减少小区块的影响;降低数据不平衡度以优化分类器组;在扩展的数据集上训练SVM分类器。标准数据集上的实验结果表明,与几种经典的算法相比,SS-SVM在多类不平衡数据分类上可获得令人满意的分类结果,对少类数据分类精度要求较高的问题尤为有效。展开更多
针对网络评论中普遍存在的负面评论较少而影响力却较大的类不平衡问题,提出一种基于类不平衡学习的情感分析方法.该方法利用深度学习训练过程中的概率输出,以计算样例的信息熵作为影响因子构建交叉信息熵损失函数.在IMDB公开数据集上进...针对网络评论中普遍存在的负面评论较少而影响力却较大的类不平衡问题,提出一种基于类不平衡学习的情感分析方法.该方法利用深度学习训练过程中的概率输出,以计算样例的信息熵作为影响因子构建交叉信息熵损失函数.在IMDB公开数据集上进行实验验证的结果表明,基于集成信息熵损失函数的双向长短期记忆网络能处理类不平衡问题;对数据的统计分析结果表明,该策略能提升基于双向长短期记忆网络的评论情感极性分类性能.针对AUC(area under curve)指标,使用集成信息熵损失函数的双向长短期记忆网络模型比未考虑类不平衡的深度学习模型在中位数上最多提升15.3%.展开更多
文摘针对多类不平衡数据分类准确率低的问题,提出一种基于空间扩展的支持向量机学习算法(support vector machine algorithm based on space spreading,SS-SVM)。根据空间扩展原理,在多维欧式空间中通过空间扩展对少类数据进行上采样,使其处理数据时减少小区块的影响;降低数据不平衡度以优化分类器组;在扩展的数据集上训练SVM分类器。标准数据集上的实验结果表明,与几种经典的算法相比,SS-SVM在多类不平衡数据分类上可获得令人满意的分类结果,对少类数据分类精度要求较高的问题尤为有效。
文摘针对网络评论中普遍存在的负面评论较少而影响力却较大的类不平衡问题,提出一种基于类不平衡学习的情感分析方法.该方法利用深度学习训练过程中的概率输出,以计算样例的信息熵作为影响因子构建交叉信息熵损失函数.在IMDB公开数据集上进行实验验证的结果表明,基于集成信息熵损失函数的双向长短期记忆网络能处理类不平衡问题;对数据的统计分析结果表明,该策略能提升基于双向长短期记忆网络的评论情感极性分类性能.针对AUC(area under curve)指标,使用集成信息熵损失函数的双向长短期记忆网络模型比未考虑类不平衡的深度学习模型在中位数上最多提升15.3%.