Coal is primarily beneficiated by wet gravity methods. The wet processing of coal is an efficient practice. However, it introduces the moisture in the range of 6%-15%, depending upon the size of coal which is as detri...Coal is primarily beneficiated by wet gravity methods. The wet processing of coal is an efficient practice. However, it introduces the moisture in the range of 6%-15%, depending upon the size of coal which is as detrimental as ash content to the heating value of coal. Dry beneficiation of coal fines was carried out using an air fluidized vibrating table in which the coal particles get separated from the heavier mineral particles as a result of horizontal and vertical stratification. Two level factorial design matrix was used to optimize and assess the interactive effects of the operational parameters of a pneumatic table viz. deck eccentric, side tilt and air flow rate on the clean coal yield and its ash content. Double stage processing was found to be more effective for reducing the ash content of the clean coal. Initial stage of processing at a higher ash level generates a reject of high ash with low combustibles. Cleaning of the rougher concentrate at 34%-35% ash level shows significant improvement in the organic efficiency (88.6%) and useful heat value of clean coal (15690 kJ/kg). The performance of air fluidized vibrating deck was measured by Ep value which is 0.18.展开更多
The physicochemical properties of fly ash from two kinds of coal-fired power plants were studied. Three aspects were examined: the micro-morphology, the mineral composition and the content of heavy metals. The result...The physicochemical properties of fly ash from two kinds of coal-fired power plants were studied. Three aspects were examined: the micro-morphology, the mineral composition and the content of heavy metals. The results show that the fly ash from plants using a circulating fluidized bed are more irregular par- ticles, while the particles from the plants using a pulverized coal-fired boiler are mainly spherical in shape. Quartz and mullite are the main crystalline phases in the ash. Clearly, both the technology and the coal used by a power plant can influence the mineral composition of the ash. The mineral composition of fly ash from a circulating fiuidized bed is more complex than that from a pulverized coal-fired boiler. The quantity of elements found in the fly ash is greater than that found in the bottom ash for the same plant. Heavy metals are likely to be enriched in the fly ash. Heavy metal leachability was studied using two leaching methods. The results indicate that most of the heavy metals that leached during either batch leaching or column leaching experiments did not exceed the related maximum concentration standards. But Ni concentrations in the leachates from both batch and column tests exceed the standard. The highest excess rates in both tests were 572~ and 497~, which levels might threaten the environment.展开更多
Air content, spacing factor and specific surface of fresh concrete and hardened concrete with different air contents, slumps and mineral admixtures (fly ash, slag, fly ash + slag, fly ash + slag + silica fume composit...Air content, spacing factor and specific surface of fresh concrete and hardened concrete with different air contents, slumps and mineral admixtures (fly ash, slag, fly ash + slag, fly ash + slag + silica fume composite) were studied by the air-void analyzer (AVA) method and the microscopical method. The correlations between the test results obtained from different methods were analyzed. The results show that, there is a close correlation of air content and spacing factor between the fresh concrete and the hardened concrete, but the specific surface correlation is weak. The air content of concrete measured by the AVA method is smaller than that of the pressure method and the microscopical method, because AVA device captures only the air voids with the size smaller than 3 mm. Spacing factor of the fresh concrete measured by the AVA method is greater than that of the hardened concrete measured by the microscopical method, while the specific surface is smaller. When the criterion of 4%-7% air content measured by the pressure method and microscopical method is acceptable for concrete freezing-thawing (F-T) durability in cold weather, the air content measured by the AVA method should be 2.4%-4.6%. For the concrete F-T durability, when the criterion of the spacing factor measured by the microscopical method is 300 μm, the spacing factor measured by the AVA method should be 360 μm.展开更多
文摘Coal is primarily beneficiated by wet gravity methods. The wet processing of coal is an efficient practice. However, it introduces the moisture in the range of 6%-15%, depending upon the size of coal which is as detrimental as ash content to the heating value of coal. Dry beneficiation of coal fines was carried out using an air fluidized vibrating table in which the coal particles get separated from the heavier mineral particles as a result of horizontal and vertical stratification. Two level factorial design matrix was used to optimize and assess the interactive effects of the operational parameters of a pneumatic table viz. deck eccentric, side tilt and air flow rate on the clean coal yield and its ash content. Double stage processing was found to be more effective for reducing the ash content of the clean coal. Initial stage of processing at a higher ash level generates a reject of high ash with low combustibles. Cleaning of the rougher concentrate at 34%-35% ash level shows significant improvement in the organic efficiency (88.6%) and useful heat value of clean coal (15690 kJ/kg). The performance of air fluidized vibrating deck was measured by Ep value which is 0.18.
基金provided by the Europe-AsiaLink (No. CN/ASIA-LINK/010 94556)State Scholarship Fund of China Scholarship Council (No. 2010642035)
文摘The physicochemical properties of fly ash from two kinds of coal-fired power plants were studied. Three aspects were examined: the micro-morphology, the mineral composition and the content of heavy metals. The results show that the fly ash from plants using a circulating fluidized bed are more irregular par- ticles, while the particles from the plants using a pulverized coal-fired boiler are mainly spherical in shape. Quartz and mullite are the main crystalline phases in the ash. Clearly, both the technology and the coal used by a power plant can influence the mineral composition of the ash. The mineral composition of fly ash from a circulating fiuidized bed is more complex than that from a pulverized coal-fired boiler. The quantity of elements found in the fly ash is greater than that found in the bottom ash for the same plant. Heavy metals are likely to be enriched in the fly ash. Heavy metal leachability was studied using two leaching methods. The results indicate that most of the heavy metals that leached during either batch leaching or column leaching experiments did not exceed the related maximum concentration standards. But Ni concentrations in the leachates from both batch and column tests exceed the standard. The highest excess rates in both tests were 572~ and 497~, which levels might threaten the environment.
基金Project(50908229) supported by the National Natural Science Foundation of ChinaProjects(2008G031-N, 50908229, 10125C131) supported by Technological Research and Development Programs of the Ministry of Railways, China
文摘Air content, spacing factor and specific surface of fresh concrete and hardened concrete with different air contents, slumps and mineral admixtures (fly ash, slag, fly ash + slag, fly ash + slag + silica fume composite) were studied by the air-void analyzer (AVA) method and the microscopical method. The correlations between the test results obtained from different methods were analyzed. The results show that, there is a close correlation of air content and spacing factor between the fresh concrete and the hardened concrete, but the specific surface correlation is weak. The air content of concrete measured by the AVA method is smaller than that of the pressure method and the microscopical method, because AVA device captures only the air voids with the size smaller than 3 mm. Spacing factor of the fresh concrete measured by the AVA method is greater than that of the hardened concrete measured by the microscopical method, while the specific surface is smaller. When the criterion of 4%-7% air content measured by the pressure method and microscopical method is acceptable for concrete freezing-thawing (F-T) durability in cold weather, the air content measured by the AVA method should be 2.4%-4.6%. For the concrete F-T durability, when the criterion of the spacing factor measured by the microscopical method is 300 μm, the spacing factor measured by the AVA method should be 360 μm.