The stability of soil aggregates and the fractal characteristics of four typical land use types(farmland,grassland,woodland,and bare land) in the Jiangjiagou Ravine(Yunnan,China),a frequent debris flow occurring area,...The stability of soil aggregates and the fractal characteristics of four typical land use types(farmland,grassland,woodland,and bare land) in the Jiangjiagou Ravine(Yunnan,China),a frequent debris flow occurring area,were studied according to the normal mean mass diameter and fractal theory.The present research showed that the stability of the soil aggregates was different for the different land use types.When the soil depth was 0-30 cm,farmland soil formed more aggregates with diameters greater than 0.25 mm,i.e.,the farmland soil was more stable than that of the other three land uses.When the soil depth was 30-45 cm,the order of stability of the soil aggregates was woodland > grassland > farmland > bare land.The fractal dimensions had a significant linear positive correlation with the amount of soil particles with diameters of <0.25 mm,and a significant negative linear correlation with the amount of soil particles with diameters of 0.25-0.5 mm,0.5-1 mm and 1-2 mm.Smaller fractal dimensions of the soil particles correlated with more stable soil aggregates.The fractal dimensions had a positive linear correlation with the soil bulk density and a negative correlation with the concentration of organic matter.These results showed that soil aggregates can be used as a parameter for characterizing the soil structures and properties.According to these results,the soil particle fractal dimensions could not only objectively characterize the stability of the soil structure but also could be used to indicate soil structure and properties.In addition,these results have great significance for the discussion of the comprehensive evaluation of soil.展开更多
This research sampled subaerial ambient coarse aerosol particles (〉2μm of equivalent area diameter) in the typical air polluted city of Shijiazhuang to measure the particle size distribution and shape characterist...This research sampled subaerial ambient coarse aerosol particles (〉2μm of equivalent area diameter) in the typical air polluted city of Shijiazhuang to measure the particle size distribution and shape characteristics by the analyzer of CIS-50 and the scan electronic microscope of S-570 in the non-heating period and heating period respectively. The results show that the coarse aerosol particle size distribution mode is 2-4μm in the non-heating period and 3-5μm in the heating period, with the size range of 0.8-120μm, mostly under 10μm; and the square or square like particle shape is dominant, the sphere like lesser, the acute-angle and lathy shape sparse. There exist particle size distribution and shape characteristics differences in the non-heating period and heating period influenced greatly by the ground coal combustion emission and windblown dust. In the heating period, particle size average increases by 53.2%, principally in the size range of 5-10μm, and 20-50μm secondly. Meanwhile, the particle number of quasi-round and round shape group and those with convex-concave fractal edge increase obviously. These quasi-round particles are agglomerate derived from combustion in the SEM images. The relationship between particle size and shape is demonstrated by that the percentage of PM5 and the particle number of the quasi-square and square shape group are positively correlative with r of 0.9458; quasi-round and round shape group negatively correlative with r of-0.9726 respectively.展开更多
基金supported by the Research Fund for Commonweal Trades Meteorology (Grant No. GYHY201006039)the Starting fund fordoctoral research of Neijiang Normal University(Grant No.09249)
文摘The stability of soil aggregates and the fractal characteristics of four typical land use types(farmland,grassland,woodland,and bare land) in the Jiangjiagou Ravine(Yunnan,China),a frequent debris flow occurring area,were studied according to the normal mean mass diameter and fractal theory.The present research showed that the stability of the soil aggregates was different for the different land use types.When the soil depth was 0-30 cm,farmland soil formed more aggregates with diameters greater than 0.25 mm,i.e.,the farmland soil was more stable than that of the other three land uses.When the soil depth was 30-45 cm,the order of stability of the soil aggregates was woodland > grassland > farmland > bare land.The fractal dimensions had a significant linear positive correlation with the amount of soil particles with diameters of <0.25 mm,and a significant negative linear correlation with the amount of soil particles with diameters of 0.25-0.5 mm,0.5-1 mm and 1-2 mm.Smaller fractal dimensions of the soil particles correlated with more stable soil aggregates.The fractal dimensions had a positive linear correlation with the soil bulk density and a negative correlation with the concentration of organic matter.These results showed that soil aggregates can be used as a parameter for characterizing the soil structures and properties.According to these results,the soil particle fractal dimensions could not only objectively characterize the stability of the soil structure but also could be used to indicate soil structure and properties.In addition,these results have great significance for the discussion of the comprehensive evaluation of soil.
基金Acknowledgements: The study is supported by the Hebei Province Natural Science Foundation (No. D200500176) and the open fund of Hebei Provincial Key Lab of Ecology and Environment Monitoring (No. SYSKF0604). The authors thank for the help of professor LI Ji-biao for the SEM observation and the support from the size analysis lab of Hebei Normal University.
文摘This research sampled subaerial ambient coarse aerosol particles (〉2μm of equivalent area diameter) in the typical air polluted city of Shijiazhuang to measure the particle size distribution and shape characteristics by the analyzer of CIS-50 and the scan electronic microscope of S-570 in the non-heating period and heating period respectively. The results show that the coarse aerosol particle size distribution mode is 2-4μm in the non-heating period and 3-5μm in the heating period, with the size range of 0.8-120μm, mostly under 10μm; and the square or square like particle shape is dominant, the sphere like lesser, the acute-angle and lathy shape sparse. There exist particle size distribution and shape characteristics differences in the non-heating period and heating period influenced greatly by the ground coal combustion emission and windblown dust. In the heating period, particle size average increases by 53.2%, principally in the size range of 5-10μm, and 20-50μm secondly. Meanwhile, the particle number of quasi-round and round shape group and those with convex-concave fractal edge increase obviously. These quasi-round particles are agglomerate derived from combustion in the SEM images. The relationship between particle size and shape is demonstrated by that the percentage of PM5 and the particle number of the quasi-square and square shape group are positively correlative with r of 0.9458; quasi-round and round shape group negatively correlative with r of-0.9726 respectively.