Two-dimensional boundary layer flow of an incompressible third grade nanofluid over a stretching surface is investigated.Influence of thermophoresis and Brownian motion is considered in the presence of Newtonian heati...Two-dimensional boundary layer flow of an incompressible third grade nanofluid over a stretching surface is investigated.Influence of thermophoresis and Brownian motion is considered in the presence of Newtonian heating and viscous dissipation.Governing nonlinear problems of velocity, temperature and nanoparticle concentration are solved via homotopic procedure.Convergence is examined graphically and numerically. Results of temperature and nanoparticle concentration are plotted and discussed for various values of material parameters, Prandtl number, Lewis number, Newtonian heating parameter, Eckert number and thermophoresis and Brownian motion parameters. Numerical computations are performed. The results show that the change in temperature and nanoparticle concentration distribution functions is similar when we use higher values of material parameters β1 andβ2. It is seen that the temperature and thermal boundary layer thickness are increasing functions of Newtonian heating parameter γ.An increase in thermophoresis and Brownian motion parameters tends to an enhancement in the temperature.展开更多
Natural organic fertilizers are receiving increased attention as a nutrient source for athletic turf fields. However, the performance of these fertilizers as an alternative to inorganic fertilizers is relatively untes...Natural organic fertilizers are receiving increased attention as a nutrient source for athletic turf fields. However, the performance of these fertilizers as an alternative to inorganic fertilizers is relatively untested. To address this issue, we initiated a study to evaluate turfgrass response to the use of pelletized poultry litter (PPL) as a nutrient source compared to inorganic fertilizer, and to compare core aeration and vibrating aeration. Four treatments were evaluated: synthetic fertilizer with vibrating aeration (VS), synthetic fertilizer with core aeration (CS), PPL with vibrating aeration (VP), and PPL with core aeration (CP). The PPL was applied at a nitrogen (N) rate equivalent to the synthetic fertilizer (assuming 50% availability of N). Application of PPL did not produce significant changes in measured soil parameters during the 2.5 year study compared to the synthetic fertilizer. Minimal differences in tissue concentrations of Mn were observed. Remote sensing indicated that the CS treatment, which is the current management practice at the study site, produced the lowest turfgrass quality of all the treatments. Highest turf quality was achieved with the CP and VS treatments. Application of PPL resulted in greater turfgrass quality when compared to the same N rate of synthetic fertilizer, regardless of aeration method.展开更多
基金funded by the Deanship of Scientific Research (DSR), King Abdulaziz University (KAU), under Grant No. 37-130-35-HiCi
文摘Two-dimensional boundary layer flow of an incompressible third grade nanofluid over a stretching surface is investigated.Influence of thermophoresis and Brownian motion is considered in the presence of Newtonian heating and viscous dissipation.Governing nonlinear problems of velocity, temperature and nanoparticle concentration are solved via homotopic procedure.Convergence is examined graphically and numerically. Results of temperature and nanoparticle concentration are plotted and discussed for various values of material parameters, Prandtl number, Lewis number, Newtonian heating parameter, Eckert number and thermophoresis and Brownian motion parameters. Numerical computations are performed. The results show that the change in temperature and nanoparticle concentration distribution functions is similar when we use higher values of material parameters β1 andβ2. It is seen that the temperature and thermal boundary layer thickness are increasing functions of Newtonian heating parameter γ.An increase in thermophoresis and Brownian motion parameters tends to an enhancement in the temperature.
文摘Natural organic fertilizers are receiving increased attention as a nutrient source for athletic turf fields. However, the performance of these fertilizers as an alternative to inorganic fertilizers is relatively untested. To address this issue, we initiated a study to evaluate turfgrass response to the use of pelletized poultry litter (PPL) as a nutrient source compared to inorganic fertilizer, and to compare core aeration and vibrating aeration. Four treatments were evaluated: synthetic fertilizer with vibrating aeration (VS), synthetic fertilizer with core aeration (CS), PPL with vibrating aeration (VP), and PPL with core aeration (CP). The PPL was applied at a nitrogen (N) rate equivalent to the synthetic fertilizer (assuming 50% availability of N). Application of PPL did not produce significant changes in measured soil parameters during the 2.5 year study compared to the synthetic fertilizer. Minimal differences in tissue concentrations of Mn were observed. Remote sensing indicated that the CS treatment, which is the current management practice at the study site, produced the lowest turfgrass quality of all the treatments. Highest turf quality was achieved with the CP and VS treatments. Application of PPL resulted in greater turfgrass quality when compared to the same N rate of synthetic fertilizer, regardless of aeration method.