A two-stage multi-objective optimization model-predictive control algorithms(MPC) strategy is presented. A domain MPC controller with input constraints is used to increase freedom for steady-state objective and enhanc...A two-stage multi-objective optimization model-predictive control algorithms(MPC) strategy is presented. A domain MPC controller with input constraints is used to increase freedom for steady-state objective and enhance stabilization of the controller. A steady-state objective optimization algorithm oriented to transient process is adopted to realize optimization of objectives else than dynamic control. It is proved that the stabilization for both dynamic control and steady-state objective optimization can be guaranteed. The theoretical results are demonstrated and discussed using a distillation tower as the model. Theoretical analysis and simulation results show that this control strategy is efficient and provides a good strategic solution to practical process control.展开更多
In this paper,the model predictive control based on the state estimation for a constrained system isinvestigated.By modifying the constraints for the predictive state,the control sequence becomes feasiblefor the real ...In this paper,the model predictive control based on the state estimation for a constrained system isinvestigated.By modifying the constraints for the predictive state,the control sequence becomes feasiblefor the real system,i.e.,the system state is guaranteed to be in the constraint domain.It s also provedthat the close-loop system is asymptotically stable and the system state converges to the origin.The conclusionis verified through simulation.展开更多
A constrained decoupling (generalized predictive control) GPC algorithm is proposed for MIMO (malti-input multi-output) system. This algorithm takes account of all constraints of inputs and their increments. By solvin...A constrained decoupling (generalized predictive control) GPC algorithm is proposed for MIMO (malti-input multi-output) system. This algorithm takes account of all constraints of inputs and their increments. By solving matrix equations, the multi-step predictive decoupling controllers are realized. This algorithm need not solve Diophantine functions, and weakens the cross-coupling of the variables. At last the simulation results demon- strate the effectiveness of this proposed strategy.展开更多
This paper presents a two-stage robust model predictive control (RMPC) algorithm named as IRMPC for uncertain linear integrating plants described by a state-space model with input constraints. The global convergence o...This paper presents a two-stage robust model predictive control (RMPC) algorithm named as IRMPC for uncertain linear integrating plants described by a state-space model with input constraints. The global convergence of the resulted closed loop system is guaranteed under mild assumption. The simulation example shows its validity and better performance than conventional Min-Max RMPC strategies.展开更多
基金Supported by the National Natrural Science Foundation of China(No.69635010).
文摘A two-stage multi-objective optimization model-predictive control algorithms(MPC) strategy is presented. A domain MPC controller with input constraints is used to increase freedom for steady-state objective and enhance stabilization of the controller. A steady-state objective optimization algorithm oriented to transient process is adopted to realize optimization of objectives else than dynamic control. It is proved that the stabilization for both dynamic control and steady-state objective optimization can be guaranteed. The theoretical results are demonstrated and discussed using a distillation tower as the model. Theoretical analysis and simulation results show that this control strategy is efficient and provides a good strategic solution to practical process control.
基金Supported by the National Natural Science Foundation of China (No. 60604017)
文摘In this paper,the model predictive control based on the state estimation for a constrained system isinvestigated.By modifying the constraints for the predictive state,the control sequence becomes feasiblefor the real system,i.e.,the system state is guaranteed to be in the constraint domain.It s also provedthat the close-loop system is asymptotically stable and the system state converges to the origin.The conclusionis verified through simulation.
基金Supported by the National Natural Science Foundation of China (No.60374037, No.60574036), the Program for New Century Excellent Talents in University of China (NCET), and the Specialized Research Fund for the Doctoral Program of Higher Edu-cation of China (No.20050055013).
文摘A constrained decoupling (generalized predictive control) GPC algorithm is proposed for MIMO (malti-input multi-output) system. This algorithm takes account of all constraints of inputs and their increments. By solving matrix equations, the multi-step predictive decoupling controllers are realized. This algorithm need not solve Diophantine functions, and weakens the cross-coupling of the variables. At last the simulation results demon- strate the effectiveness of this proposed strategy.
文摘This paper presents a two-stage robust model predictive control (RMPC) algorithm named as IRMPC for uncertain linear integrating plants described by a state-space model with input constraints. The global convergence of the resulted closed loop system is guaranteed under mild assumption. The simulation example shows its validity and better performance than conventional Min-Max RMPC strategies.